Experimental measurements and multi-scale modelling of the relative gas permeability of a clay-rich tight carbonate

F. Bignonnet¹,², Z. Duan¹, P. Egermann³, L. Jeannin⁴ and F. Skoczylas¹

1 École Centrale de Lille, Laboratoire de Mécanique de Lille (UMR 8107), Villeneuve d’Ascq
2 Université Paris-Est, Laboratoire Navier (UMR 8205), CNRS, ENPC, IFSTTAR
3 Storengy, Bois Colombes
4 GDF SUEZ E&P International, La Défense

June 10th, 2015
Outline

Industrial context

Experimental characterization

Multi-scale modelling

Conclusion
Outline

Industrial context

Experimental characterization

Multi-scale modelling

Conclusion
Caprock for underground gas storage

- Studied caprock: clay-rich tight carbonate

- Expected confinement properties
 - static barrier: threshold capillary pressure
 - dynamic barrier: low permeability
Outline

Industrial context

Experimental characterization

Multi-scale modelling

Conclusion
Two porosity measures: water and gas (Argon)

- with water:
 \[\phi = \frac{\text{wet mass} - \text{dry mass}}{\text{volume} \times \text{water density}} \]

 vacum pump 24h

- with gas:
 \[\phi V = \frac{P_c}{P_t} V_t \]

Measured porosities \(\phi(\%) \) at various confining pressures:

<table>
<thead>
<tr>
<th>sample</th>
<th>water, 0 MPa</th>
<th>gas, 2 MPa</th>
<th>gas, 9 MPa</th>
<th>gas, 2 MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIL-13</td>
<td>9.6</td>
<td>11.8</td>
<td>10.7</td>
<td>11.5</td>
</tr>
<tr>
<td>MIL-14</td>
<td>8.9</td>
<td>12.4</td>
<td>11.7</td>
<td>12.2</td>
</tr>
<tr>
<td>MIL-22</td>
<td>10.2</td>
<td>12.7</td>
<td>11.8</td>
<td>12.5</td>
</tr>
<tr>
<td>MIL-23</td>
<td>9.0</td>
<td>11.7</td>
<td>10.8</td>
<td>11.5</td>
</tr>
<tr>
<td>MIL-24</td>
<td>9.1</td>
<td>11.8</td>
<td>11.1</td>
<td>11.8</td>
</tr>
</tbody>
</table>
Water sorption/desorption isotherms

Capillary pressure

\[P_{\text{cap}} = P_{\text{gaz}} - P_{\text{liq}} \]

- Kelvin’s law
 \[P_{\text{cap}} \propto - \ln RH \]
 \(RH = \text{relative humidity} \)

- Laplace’s law
 \[P_{\text{cap}} \propto \frac{1}{e} \]
 \(e = \text{pore size} \)
Capillary pressure curve - pore size distribution
Capillary pressure curve - pore size distribution

Kelvin-Laplace’s flat pore aperture e (nm)

Water saturation S_w

$e_{min} = 0.62$

$e_{max} = 368$

Desorption

Sorption

Log-uniform law fit
Gas permeability measurements

- Steady-state Argon permeameter

\[P_{\text{out}} = P_{\text{atm}} \]

\[q_{\text{out}} \]

- Dry samples, in-situ confining pressure:
 - Effective gas permeability:
 \[K^{\text{eff}} = 1.25 \pm 0.15 \times 10^{-18} \text{m}^2 \]
 at \(P_{\text{in}} = 1 \text{ MPa} \)
 - Intrinsic permeability:
 \[K^{\text{int}} = 2.4 \pm 1.0 \times 10^{-19} \text{m}^2 \]

with Klinkenberg’s law
\[K^{\text{eff}} = K^{\text{int}} \left(1 + \frac{\beta}{P_{\text{m}}} \right) \]

- Klinkenberg’s coefficient:
 \(\beta \) from 1.0 to 3.4 MPa
 \[\rightarrow \text{pore size } e \approx 15 \text{ to } 30 \text{ nm} \]
 (slip flow from kinetic theory of gas)
Gas relative permeability

Confining pressure = 2 MPa

![Graph showing gas relative permeability vs. water saturation for different MILs with markers for MIL-12, MIL-13, MIL-14, MIL-22, MIL-23, and MIL-24.]
Gas relative permeability

Confining pressure $= 9$ MPa (\approx as in-situ)

![Graph showing relative gas permeability vs. water saturation for different MIL materials](image)
Gas relative permeability

Confining pressure = 9 MPa (≈ as in-situ)

- Capillary breakthrough pressure:
 - sample MIL-14: 5.8 MPa
 - sample HAU-1: 2.9 MPa

- Effective gas permeability at breakthrough:
 - sample MIL-14: $8.4 \times 10^{-23} \text{m}^2$
Outline

Industrial context

Experimental characterization

Multi-scale modelling

Conclusion
Permeability upscaling

- **Two scales of flow description**
 - Engineer scale: Darcy law
 - Pore scale: Stokes equations

- **Ideally**: solve Stokes equations on a 3D representative volume element of this material...

... out of reach! ⇒ simplification
Equivalent heterogeneous Darcy medium - dry case

- Actual microstructure
 - canaliculi
 - clay particles
 - carbonate aggregate
 - high porosity region

- Simplified microstructure
 - grain
 - interface
 - high porosity region
 - Interface dominated flow: $e \ll R$

- Interface dominated flow: $e \ll R$
Equivalent heterogeneous Darcy medium - dry case

- Simplified microstructure

- Interface dominated flow: $e \ll R$

- Interface equivalent permeability $k^{\text{int}} = \frac{e^2}{12}$ (Poiseuille flow)

\Rightarrow grain + interface \Leftrightarrow homogeneous medium with $k^{\text{eq}} = \frac{e^2}{12} \times \frac{e}{R}$
Equivalent heterogeneous Darcy medium - wet case

- Log-uniform interface aperture distribution

\[e^* = \frac{2\gamma}{P_{\text{cap}}} \] = critical interface aperture

\[s = \text{fraction of water saturated interfaces} \]

\[S_w = \text{water saturation} \]

\[f = \text{fraction of high porosity regions} \]

- Involved Eshelby problems

\[\begin{align*}
 \text{gas:} & \quad \mathbf{p} = \nabla P_0 \cdot \mathbf{z} \\
 \text{water:} & \quad k = 0 \\
 \text{high porosity regions:} & \quad k \gg k_{\text{hom}} \\
 \text{grains:} & \quad k = 0 \\
 \text{interfaces:} & \quad k_{\text{hom}} \gg k \\
 \text{gas, water:} & \quad \bar{e} > e^* \\
 \text{gas, water:} & \quad \bar{e} < e^*
\end{align*} \]

- Homogenized gas permeability

\[K_{\text{hom}} = \frac{e_{\text{med}}^3}{24 R} \left(\frac{\rho_{1-f}}{1-f} \right)^{\frac{3}{2}} \left(\frac{1-3f(1-S_w)}{1-f} \right) + \frac{3}{2} (2s-1) \]

with

\[\begin{cases}
 e_{\text{med}} = \sqrt{e_{\text{min}} e_{\text{max}}} \\
 \rho = e_{\text{max}} / e_{\text{min}}
\end{cases} \]
Comparison to experimental data

![Graph showing relative gas permeability vs. water saturation for different MIL samples.]

- Percolation threshold at critical water saturation S_{wc}
- With $s = S_w$ and $f = \phi = 11\%$

Context

Experimental characterization

Multi-scale modelling

Conclusion
Outline

Industrial context

Experimental characterization

Multi-scale modelling

Conclusion
Conclusion

- Experimental characterization on caprocks has evidenced:
 - a static barrier due to capillary breakthrough pressure
 - a dynamic barrier due to very low effective gas permeability

- Multi-scale modelling allows to retrieve:
 - the general trend of relative gas permeability curve
 - a critical water saturation for breakthrough

Thank you for your attention