Cristallisation isotherme des bruts paraffiniques

I. Hénaut, G. Vinay
Agenda

- Basics on waxy crude oils rheology
 - Main features
 - Characterization challenges
- Aging phenomenon and isothermal crystallization
 - Definition
 - Rheological and DSC results
- Conclusion
Basics on waxy crude oils rheology

- Main features: typical flow curves

- Increase in viscosity and shear thinning behavior
- Yield stress
Basics on waxy crude oils rheology

- Main features: typical oscillatory curves

Increase in solid like behavior ($G'>G''$)
Basics on waxy crude oils rheology

- Characterization challenges: versatility of properties

- Change of morphology upon cooling rate

- Change of rheology upon cooling conditions

![Image of morphology change](image1.png)

![Graph showing rheology change](image2.png)
Aging phenomenon and isothermal crystallization

- **Definition**: Increase of elastic modulus during an holding time at constante temperature

Appearance of additional crystals?

Re-organisation of existing crystals (Oswald Ripening)?

Delay of thermal diffusion?

J.A. Lopes da Silva and J.A.P. Coutinho

‘Analysis of the isothermal structural development in waxy crude oils under quiescent conditions’

Energy&Fuels, 2007, 21, 3612-3617
Aging phenomenon and isothermal crystallization

- Experimental approach: DSC and rheological measurements

Mettler Toledo DSC1 and 40μl cell.

AR2000 Rheometer TA Instruments
Aging phenomenon and isothermal crystallization

- Preliminary rheological characterization: cooling under shear (-5°C/min)

![Graph showing the relationship between temperature and viscosity with WAT approximately 40°C.](image)

- $T < \text{WAT}$: High viscosity and shear thinning behavior
- $T > \text{WAT}$: Low viscosity and newtonian behavior

WAT $\approx 40°C$
Aging phenomenon and isothermal crystallization

- Preliminary rheological characterization: cooling under shear
- Influence of cooling rate

- On final viscosity
- On final elastic modulus after cooling at 50s\(^{-1}\)

For samples cooled under shear, viscosity and elastic modulus increase with cooling rate.
Aging phenomenon and isothermal crystallization

- Preliminary rheological characterization: quiescent cooling
- Influence of cooling rate on final elastic modulus

For samples statically cooled, elastic modulus decreases with cooling rate.
Aging phenomenon and isothermal crystallization

- evolution of G' with time: samples statically cooled

-1°C/min

-10°C/min

No aging
Aging phenomenon and isothermal crystallization

- Evolution of G' with time: samples statically cooled
Aging phenomenon and isothermal crystallization

- Evolution of G' with time: samples statically cooled

![Graph showing the evolution of G' with cooling rate.](image)
Aging phenomenon and isothermal crystallization

- evolution of G' with time: samples statically cooled

![Graph showing the evolution of G' with cooling rate](image)
Aging phenomenon and isothermal crystallization

- evolution of G' with time: samples statically cooled
Aging phenomenon and isothermal crystallization

- evolution of G' with time: samples statically cooled and cooled under shear
Aging phenomenon and isothermal cristallization

- Evolution of G' with time: samples cooled under shear
- Holding time at rest
Aging phenomenon and isothermal crystallization

- evolution of G' with time: samples cooled under shear
- Holding time at rest
Aging phenomenon and isothermal crystallization

- Evolution of G' with time: samples cooled under shear
- Holding time at rest
Aging phenomenon and isothermal crystallization

- Evolution of G' with time: samples cooled under shear
- Holding time at rest
Aging phenomenon and isothermal crystallization

- **DSC results**
 - 60°C to 30°C with various cooling rates (-0.25° to 30°C/min)
 - Heat exchanged during isothermal crystallization from 60 to 30°C
Aging phenomenon and isothermal cristallization

- DSC results of subsequent isothermal steps
- 2 crude oils (WAT of S = 40°C WAT of D = 20°C) same Cp

- Isothermal heat flow at 45°C
- Isothermal heat flow at 30°C

\[\frac{dQ}{dt} = cp \frac{dT}{dt} \]

\[\frac{dQ}{dt} = cp \frac{dT}{dt} + \text{thermal event} \]
Aging phenomenon and isothermal crystallization

- DSC results: total exchanged heat vs anisothermal heat
Conclusion

- Aging is favored by
 - High cooling rate at quiescent conditions
 - No aging after slow dynamic cooling (beneficial effect)

- Isothermal crystallization is fast

- Slow evolution ≠ isothermal crystallization
 - Thermal delay (high volume)
 - Structural change (Ostwald ripening, molecular diffusion)
Innover les énergies

Retrouvez-nous sur :

🌐 www.ifpenergiesnouvelles.fr
🐦 @IFPENinnovation
Aging phenomenon and isothermal crystallization

- evolution of G' with time: samples statically cooled

$-10^\circ C/min$