Reciprocal Dumping under Dichotomous Regulation

Energy Markets 2018

Sébastien Debia ¹

Georges Zaccour²

June, 19th 2018

^{1.} HEC Montréal-GERAD

^{2.} Chair in Game Theory and Management, HEC Montréal GERAD

Introduction

Model

Results

Introduction

Mode

Result

Competition policies and international trade

Markets

- Competition Policies: Bounds limiting strategic behavior (merger, mark-up, etc.)
 - ► Matter of local sovereignty (Becker, 2007, JCLE)
 - WTO: Failure of the Doha round (Bagwell, 2016, JEL)
 - Preferential Trade Agreements: 70% enact non-distortion of competition, 2% enact coordination (Dür et al., 2014, RIO)

State-Owned firms (OECD)

▶ In 2011, 19% of the value of international trade (Przemyslaw and Katernya, 2015, OECD).

Dichotomous Regulation

- Competition policies aims at protecting local consumers, but foreign consumers are not in their jurisdiction
- Export Cartel Exemptions (Becker, 2007, JCLE)
 - US: the Sherman Act shall not apply to export cartel, as long as the effect on the local economy is incidental and insushtantial
 - EU : Focus on anticompetitive effects within the Common Market

Research Question

Reciprocal Dumping under Dichotomous Regulation

Is there any rationale for export cartels to bias their home market? To what extent this effect can be substantial?

The structure of international trade

The theory of Comparative Advantages

- Each country should specialize in what it does the best, relatively to the other
- Inter-industry trade

The reality of Intra-industry trade

60% of EU and US trade is intra-industry a

a. Figures from https://opentextbc.ca/principlesofeconomics/ chapter/33-3-intra-industry-trade-between-similar-economies/

Intra-industry trade and reciprocal dumping

Definitions

- ▶ Intra-industry trade : trade between the same industry sector
- Reciprocal dumping: Intra-industry trade where both country sell at a foreign price lower than the local one, including transport cost

Reciprocal dumping in the New Trade Theory

- Reciprocal dumping is a matter of price discrimination between price-making producers
- May be desirable to mitigate market power: Brander (1981, JIE), Brander & Krugman (BK, 1983, JIE), Weinstein (1992, JIE), Yomogida (2008, IREF)

Our setup

Extending Brander & Krugman (1983)

- ► Two local monopolies acting à la Cournot
- Transport cost must be paid to export
- Sequential Decision : Exports first, then produces and sells locally
 - Eden (2007, JIE): "delivery to order" (forward contracts)

Taking into account dichotomous regulation

► The subgame (local sales) become regulated : Marginal-cost pricing

Assymetries in cost and demand

Reciprocal Dumping under Dichotomous Regulation

Remark: what results involves sequential decisions?

Allaz & Villa (1993, JET)

- 2 players à la Cournot
- Linear inverse demand and cost function
- Adding layers of forward (Cournot) markets improves efficiency

Kreps & Scheinkman (1983, RAND)

- 2 symmetric players
- deciding production (investment) à la Cournot
- then sales (costless production) à la Bertrand
- Equilibium is Cournot
- When the two stages have different rational, it may impede efficiency

Introduction

Main results

Cournot Subgame

More trade, but doesn't change the nature of the game

Regulated Subgame

- Exports can be used as a tool to create scarcity
- But increasing marginal cost is a necessary condition.
 - ➤ Standard assumption in the "New" New Trade Theory : Melitz (2003, Econometrica), Edmond et al. (2015, AER)
- Symmetric equilibrium is of reciprocal dumping
- Symmetric equilibrium is Pareto-dominated by autarky (competitive benchmark)
- Characterize the necessary conditions for the asymmetric equilibrium to be of reciprocal or unilateral dumping

Example: Electricity market regulation in the U.S.

- Local regulation is strongly enforced
- Market prices in North-eastern markets (ISONE, NYISO, PJM) are "competitive".
- Merchant HVDC transmission investors can bilaterally negotiate for the whole capacity allocation (FERC, 2013).
- ▶ Releasing rule of rights are enforced close to real-time
- ▶ With interconnected regulated area, no public price is available ⇒ impossibility to measure the price-spread

Application

Debia et al. (Forthcoming, EJ): A new HVDC interconnection between Québec and New York City may destroy wealth if strategic interactions are not monitored correctly.

Introduction

Model

Result

The model

Each local monopolist i exports to the other market j while anticipating the local market clearing in both markets:

$$\max_{x_i \geq 0} gx_i P_j(\hat{y}_j(\mathbf{x}), gx_i) + \hat{y}_i(\mathbf{x}) P_i(\hat{y}_i(\mathbf{x}), gx_j) - C_i(\hat{y}_i(\mathbf{x}), x_i),$$

where, for all k,

$$\hat{y}_k(\mathbf{x}) = \begin{cases} [\mathsf{Cournot}] & 0 \le y_k \perp C'_k(y_k, x_k) \ge MR_k(y_k, gx_{-k}), \\ [\mathsf{Regulated}] & 0 \le y_k \perp C'_k(y_k, x_k) \ge P_k(y_k, gx_{-k}), \end{cases}$$

and $g \in [0,1]$: "Iceberg" transportation cost.

Initial assumptions

After Gaudet and Salant (1991, JPE)

- **A1.** There exists $\xi_i \in (0, \infty)$ such that $P_i(Z_i) > 0$ for $Z_i \in [0, \xi_i)$, i = 1, 2.
- **A2.** The inverse demand function $P_i(Z_i)$ is twice-continuously differentiable and $P_i' \le 0$ for $Z_i \in [0, \xi_i)$, i = 1, 2.
- **A3.** The cost function $C_i(Q_i)$ is twice-continuously differentiable with $C_i(0) \ge 0$ and, for any $Q_i > 0$, $C'_i(Q_i) > 0$ and $C''_i(Q_i) \ge 0$, i = 1, 2, 3
- **A4.** $y_i P_i''(Z_i) + P_i'(Z_i) < 0$ for any $Z_i \in [0, \xi_i), y_i \in [0, Z_i]$. where,

$$Z_i = y_i + gx_j,$$
 $Q_i = y_i + x_i$

3. In Gaudet and Salant (1991, JPE), $P'_i - C''_i < 0$ instead of $C''_i \ge 0$

Introduction

Mode

Results

Reciprocal Dumping under Dichotomous Regulation

The first-order condition in the regulated subgame

Let $s_i(\mathbf{x})$ be the marginal rate of substitution between local sales y_i and imports x_i , net of the transport cost, that is

$$s_i(\mathbf{x}) = \frac{1}{g} \frac{\partial \hat{y}_i(\mathbf{x})}{\partial x_j} = \frac{-P_i'(Z_i)}{P_i'(Z_i) - C_i''(Q_i)} \in [-1; 0]$$

The FOC is:

$$0 \le x_i \perp \underbrace{-\hat{y}_i\left(\mathbf{x}\right)\left(1 + s_i(\mathbf{x})\right)P_i'}_{\text{Local sales } MR_i > 0} + \underbrace{g\left[gx_i\left(1 + s_j\left(\mathbf{x}\right)\right)P_j' + P_j\right]}_{\text{Exports } MR_i} \le C_i'$$

Rationale for overexporting with the regulated subgame

Definition: Optimal international trade

International trade is optimal if at equilibrium the free-on-board (FOB) terms-of-trade is unity, that is,

$$0 \le x_i \perp \frac{P_i}{P_i} \ge g$$

Proposition 1

A regulated monopolist i overexports only if the cost function is strictly convex.

A3'. The cost function $C_i(Q_i)$ is twice-continuously differentiable with $C_i(0) \ge 0$ and, for any $Q_i > 0$, $C'_i(Q_i) > 0$ and $C''_i(Q_i) > 0$, i = 1, 2.

Elasticities

Inverse elasticity of the market

$$\theta_i \equiv \frac{1+s_i}{\epsilon_i} = \frac{1}{\epsilon_i + \gamma_i}$$

where

- $ightharpoonup \epsilon_i = rac{-P_i}{Z_i P_i^t}$: (opposite) price-elasticity of the demand,
- $ightharpoonup \gamma_i = rac{C_i'}{Z_i'C_i''}$: price-elasticity of the "local supply"

Elasticity formulation of the FOC

$$0 \le \sigma_i \perp P_i[(1-\sigma_i)\theta_i-1]+gP_i[1-\sigma_i\theta_i] \le 0.$$

where $\sigma_i \in [0,1]$ is the share of imports of market j.

Symmetric equilibrium

Competitive Benchmark: Autarky

By symmetry, no gains can be realized with trade

Reciprocal Dumping Equilibrium

$$\sigma = \frac{1}{1+g} \left(1 - \frac{1-g}{\theta} \right)$$

There is reciprocal dumping as long as $\theta > 1 - g$.

Theorem

The symmetric equilibrium is strictly Pareto-dominated by autarky if g < 1.

Unilateral exporter : local market

Figure – Surplus variation in the local market

Unilateral exporter : foreign market

Figure – Surplus variation in the foreign market

Unilateral exporter: total surplus variation

Figure – Player 1 total surplus variation

At equilibrium, each player's strategy cancels the other

Asymmetric equilibrium

- In our framework, asymmetry in the θ_i is sufficient to cover asymmetry in the supply and demand structure of each market.
- The transport cost g remains symmetric.
- ▶ The level of endogeneity between the share of imports σ_i and the price ratio P_i/P_j is too important to obtain single-valued equilibrium point.
- ▶ Reasoning in terms of interior σ 's and set of prices
 - ▶ What are the necessary conditions for both σ 's to be interior?
 - ▶ Under these conditions, how is defined P_i/P_i ?

Asymmetric interior equilibrium characterization

Asymmetric interior equilibrium characterization

- ▶ The higher is θ_i , the stronger is market i's price reaction to trade volume variation :
 - player i's dumping is more efficient w.r.t. withholding,
 - player j's withholding is more efficient w.r.t. dumping.
- ▶ If $\theta_j < 1 + g^2$: the higher is θ_i , the higher is P_i/P_j
 - i's dumping becomes dominant
- ▶ If $\theta_j > 2$: the higher is θ_i , the lower is P_i/P_j
 - i's withholding becomes dominant
- ▶ If $\theta_j \in [1 + g^2; 2]$: *i*'s withholding is dominant for any

$$heta_i
otin \left[1 - rac{1 - heta_j}{g^2}; 1 - g^2(1 - heta_j)
ight]$$

Conclusion

Main Results

- Marginal cost-pricing increases producers' willingness to dump
- ▶ Inefficient : the symmetric equilibrium is a Prisonner's Dilemna
- The Prisonner's Dilemna can be extended to weakly asymmetric cases.

Discussion: How to mitigate the effect?

- In this perfect information setting, anti-dumping policies would be efficient
 - Perfect information does not fit well with reality
- Harmonization of competition policies between countries is not sufficient
 - Coordination should be improved

