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Abstract:

Optimization of high dimensional functions under constraints and reliability assessment are key en-
gineering problems, but they often come at a prohibitive cost since they usually involve a complex
or expensive computer code. To overcome this limitation, analysts frequently rely on a prelimi-
nary dimension reduction by identifying which parameters drive the most the function variations:
non-influential variables are set to a fixed value and optimization or reliability procedures are
carried out with the remaining, significant, variables. Yet, the classical influence measures, which
are meaningful for regression problems, do not account for the specific structure of optimization
or reliability problems and can even lead to inaccurate solutions.

In this work, we describe a recent sensitivity index defined through a kernel-based dependency
measure, the Hilbert Schmidt Independence Criterion [2]. This HSIC measure is designed to
characterize whether a design variable matters to reach low values of the objective function and
to satisfy the constraints. Such sensitivity criterion can readily be extended to reliability levels.

Finally, inspired by recent works in Gaussian Process-based optimization, where the authors only
optimize on a randomly drawn subset of relevant variables at each iteration [1], we use this
sensitivity measure to guide the selection. Our method either picks variables in a probabilistic
manner where the subset of effective variables is drawn at random with probabilities equal to the
normalized HSIC measures, or in a deterministic one keeping only the variables whose normalized
HSIC measure is above a given threshold. We also provide different strategies to deal with the
negligible inputs and apply our method on several examples from optimization benchmarks, as in
Figure 1, to demonstrate how clever variable selection can efficiently improve the optimization.
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Figure 1: Median results of the different algorithms for the Borehole function. The red lines
correspond to the easy, medium and hard goals (from top to bottom) for this test case, which are
defined as the 90%, 50% and 10% quantiles of the final results of all algorithms.


