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Abstract:

Taking into account inequality constraints (e.g. boundedness, monotonicity, convexity) into
Gaussian process (GP) models can lead to more realistic predictions guided by the physics of data
[6, 4]. Figure 1 compares two models that either ignore or take into account both boundedness
(i.e. 0 ≤ y(x) ≤ 1, for x ∈ [0, 1]) and monotonicity constraints (i.e. y(x) ≥ y(x′), if x ≥ x′).
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(a) unconstrained GP
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(b) constrained GP

Figure 1: GP regression models under (a) no constraints and (b) boundedness and monotonicity
constraints. Each panel shows: (left) samples from the different types of Gaussian priors, and
(right) the resulting GP regression model conditioned on three observations (dots).

We aim at investigating a GP framework that can account for inequality constraints. Our main
contributions are threefold.

First, building on the approach proposed in [6], we introduced in [4] a full Gaussian-based
framework to satisfy a set of linear inequality constraints. The benefit of using the
finite-dimensional representation of [6] leads to satisfy the inequalities everywhere in the input
space. Furthermore, it was proved in [2] that the resulting posterior mode is the optimal
constrained interpolation function in the reproducing kernel Hilbert space. Due to the truncated
Gaussianity of the posterior, its distribution can be approximated via Monte Carlo or Markov chain
Monte Carlo. We investigated several samplers in examples on both synthetic and real-world data,
under different types of constraints. We found that the Hamiltonian Monte Carlo (HMC)-based
sampler from [7] achieves the best trade-off between running time and effective sample rates.

Despite the promising results in [4], our experiments were limited up to 2D problems due
to the tensor structure of our framework. This brings us to our second contribution, where
various alternatives have been explored for going to higher dimensions and for a high number of
observations. In the first direction, we introduced noise for the relaxation of the interpolation
constraints. This also relaxed the constraints of the HMC sampler improving its efficiency. As a
result, we were now able to use our framework in 5D spaces [3]. Moreover, since the computational
complexity here depends on the number of basis functions rather than the observations, we can
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handled thousands of observations. In a second direction, we considered specific assumptions on
the target function that are suitable in high dimensions. In particular, we adapted our framework
to additive functions, where sampling from the posterior distribution in high dimensions can be
achieved through sampling in lower dimensional spaces (e.g. 1D spaces by assuming first-order
additivity) [5]. Figure 2 plots a 5D example for a first-order additive target function satisfying
different types of inequality constraints per dimension.
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Figure 2: Additive GP regression model for x 7→ 2x1+cos(6x2)+2x2
3+4(x4−0.5)2+2 arctan(2x5)

for x ∈ [0, 1]5. The constrained predictive mean is shown satisfying: monotonicity constraints
across the first and fifth dimensions, and convexity constraints across the third and fourth
dimensions. No constraints were imposed across the second dimension.

Third, we considered the problem of estimating the covariance parameter under inequality
constraints. We studied the properties of both unconstrained and constrained maximum likelihood
(ML) estimators. Under fixed-domain asymptotics, we showed that, loosely speaking, any
consistency result for the (unconstrained) ML is preserved for the constrained ML when adding
boundedness, monotonicity and convexity conditions [4]. We also showed that the constrained
ML estimator (cMLE), conditionally to the fact that the GP satisfies those constraints, has the
same asymptotic distribution as the unconditional MLE [1].
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[5] A. F. López-Lopera, N. Durrande, F. Bachoc, and O. Roustant. Additive Gaussian processes
under inequality constraints (in preparation). 2019.

[6] H. Maatouk and X. Bay. Gaussian process emulators for computer experiments with inequality
constraints. Mathematical Geosciences, 49(5):557–582, 2017.

[7] Ari Pakman and Liam Paninski. Exact Hamiltonian Monte Carlo for truncated multivariate
Gaussians. Journal of Computational and Graphical Statistics, 23(2):518–542, 2014.
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