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Address: Mines de Saint-Étienne, 29 Rue Pierre et Dominique Ponchardier, 42100 Saint-Étienne
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Abstract:

Parametric shape optimization aims at minimizing one (or m ≥ 2 in a multi-objective setting)
objective function f(x) where x ∈ X ⊂ Rd is a d-dimensional vector of CAD parameters. It is
common that d is large, d & 50. Optimization in such a high-dimensional design space is difficult,
especially when f(·) is an expensive black-box function and the use of surrogate-based approaches
[1] is mandatory. The ratio between the allowed budget of function evaluations (b ≈ 100-200) and
d is also too small to perform sensitivity analysis prior to selecting d′ << d variables.
In this work, we exploit the fact that the computation time of a shape Ωx is negligible in comparison
with the evaluation time of f(x). Most often, the set of all CAD generated shapes, ΩΩΩ := {Ωx,x ∈
X} can be approximated in a δ << d -dimensional manifold where it is preferable to build the
surrogate model and perform the optimization. To uncover this manifold, we apply PCA to a
dataset of designs and test alternative shape representations. We then build Gaussian processes
and optimize in the reduced space of eigenshapes. Such approaches have already been considered
in part in [3, 4], but we provide a new integrated view of shape reduction and optimization with
kernel methods. In the following, the essential elements of our approach are further introduced.

From CAD description to shape eigenbasis. Let φ : X → Φ be a mapping to a high-
dimensional space Φ ⊂ RD, D >> d. We have compared alternative φ : X → Φ based on
their ability to uncover intrinsic dimensions through Principal Component Analysis (PCA). The
φ studied here are the characteristic function, the signed distance to contours and the contour
discretization. We proceed by uniformly sampling N designs in X. Performing a PCA of that
sample in the X space would be useless. However, with a proper choice of φ, we have found that a
few (δ) eigenshapes allow to accurately describe the sample of CAD shapes through their principal
components, ααα in the eigenbasis (v1, . . . ,vD).

GP model for shrinked spaces. Instead of building a surrogate for f(·) using x(1), . . . ,x(n) ∈
X ⊂ Rd, a GP is fitted to the principal components ααα(1), . . . ,ααα(n) ∈ RD. To simultaneously
emphasize the δ most important axes without entirely neglecting the D − δ remaining ones, an
additive model between the (δ) active components and the residual coordinates is considered:

Y (ααα) = µ+ Y a(ααα1:δ) + Y a(αααδ+1:D) + ε .

Y a(·) ∼ GPδ(0, ka(·, ·)) is the main-effect GP in a δ-dimensional input space and Y a(·) ∼
GPD−δ(0, ka(·, ·)) is a sparse, isotropic GP. Y a(·) lives in a high dimensional space but only
requires the estimation of 2 hyperparameters, θD and σ2

D. It aims at taking the less relevant,
though existing, effects of the remaining eigenshapes into account.
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Optimization in a reduced space. The well known Expected Improvement [2] is then max-
imized with the full Y (·) to optimize the shape. It is possible to carry out this maximization
in the X space thanks to the φ mapping, x(n+1) = arg max

x∈X
EI(ααα(x)). But such an approach

does not take advantage of the space reduction beyond the construction of Y (·). We thus pro-
pose a redefinition of improvement to carry out the maximization in the smaller space of im-
portant eigenshapes, completed by a cheap maximization with regard to the dimensions δ + 1
to D, ααα(n+1) = arg max

[ααα1:δ,αααδ+1:D]∈RD
EI([ααα1:δ,αααδ+1:D]). The calculation of the pre-image, x(n+1) =

arg min
x∈X

‖V>Φ(x)−ααα(n+1)‖2, is finally performed to find the next parametric design to be evalu-

ated by the computer code.

Figure 1: Shape decomposition in its eigenbasis
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[2] J Močkus. On Bayesian methods for seeking the extremum. In Optimization Techniques IFIP
Technical Conference, pages 400–404. Springer, 1975.

[3] Balaji Raghavan, Guenhael Le Quilliec, Piotr Breitkopf, Alain Rassineux, Jean-Marc Roelandt,
and Pierre Villon. Numerical assessment of springback for the deep drawing process by level set
interpolation using shape manifolds. International journal of material forming, 7(4):487–501,
2014.

[4] Mikkel B Stegmann and David Delgado Gomez. A brief introduction to statistical shape
analysis. Informatics and mathematical modelling, Technical University of Denmark, DTU,
15(11), 2002.

Short biography – David Gaudrie obtained his engineering degree from INSA Toulouse in
Applied Mathematics in 2016. He started a PhD thesis about high dimensional multi-objective
optimization in the context of expensive computer codes in November 2016. This thesis in funded
by the automotive group PSA (CIFRE convention) in collaboration with the École des Mines de
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