Industrial problem: maintenance optimization

- Physical system with large number of components (turbines, alternators) and a common stock of spares
- Stochastic dynamics because of the random failures of the components
- Stochastic cost because of the random CMs and forced outages cost

1. **Formalization of the problem**

- System of \(n \) components on time horizon \(T \)
 - High dimension of the decision set \(U \)
- Several couplings:
 - In the dynamics of the system (stock)
 - In the forced outage cost \(f^{(2)} \)

The maintenance optimization problem

\[
\min_{X(S,u) \in U} \mathbb{E} \left[\sum_{t=1}^{T} \left(\sum_{i=1}^{n} \left(j_{i,t}(X_i, u_{i,t}) + \frac{j^{(2)}_{i,t}}{\Lambda_i} \right) + l^{(1)}(X_t) \right) \right]
\]

s.t. \(\Theta \in X(S,u) = 0 \)

Choice of an auxiliary problem [1]

- **Additive auxiliary cost function** \(K : X \times U \rightarrow \mathbb{R} \)
- **Block-diag. auxiliary dynamics** \(\Phi : X \times S \times U \rightarrow \mathbb{R}^2 \)
- **Auxiliary problem with parameter** \(Z : X \times S \times U \)

\[
\min_{Z \in X(S,u)} \mathbb{E} \left[\sum_{t=1}^{T} \left(\sum_{i=1}^{n} \left(j_{i,t}(X_i, u_{i,t}) + K_{i,t}(X_i, u_{i,t}) \right) + l^{(1)}(X_t) \right) \right]
\]

s.t. \(\Phi(Z) = 0 \)

2. **Decomposition for large systems**

Idea: iteratively find the best policy for each component separately, then coordinate the components

2.1 Choice of an auxiliary problem [1]

- Additive auxiliary cost function \(K : X \times U \rightarrow \mathbb{R} \)
- Block-diag. auxiliary dynamics \(\Phi : X \times S \times U \rightarrow \mathbb{R}^2 \)
- Auxiliary problem with parameter \(Z : X \times S \times U \)

\[
\min_{Z \in X(S,u)} \mathbb{E} \left[\sum_{t=1}^{T} \left(\sum_{i=1}^{n} \left(j_{i,t}(X_i, u_{i,t}) + K_{i,t}(X_i, u_{i,t}) \right) + l^{(1)}(X_t) \right) \right]
\]

s.t. \(\Phi(Z) = 0 \)

2.2 Subproblem resolution: MADS

Subproblem on component \(i \) at iteration \(l + 1 \)

\[
\left(\lambda_{i}^{(l+1)}, \lambda_{i}^{(l+1)} \right) = \min_{Z \in X(S,u)} \mathbb{E} \left[\sum_{t=1}^{T} \left(\sum_{i=1}^{n} \left(j_{i,t}(X_i, u_{i,t}) + K_{i,t}(X_i, u_{i,t}) \right) + l^{(1)}(X_t) \right) \right]
\]

s.t. \(\Phi(Z) = 0 \)

Mathematical formulation:

\[
\min_{Z \in X(S,u)} \mathbb{E} \left[\sum_{t=1}^{T} \left(\sum_{i=1}^{n} \left(j_{i,t}(X_i, u_{i,t}) + K_{i,t}(X_i, u_{i,t}) \right) + l^{(1)}(X_t) \right) \right]
\]

s.t. \(\Phi(Z) = 0 \)

Blackbox framework

- Evaluation of the objective function is costly
- Assume no information on its gradients

Mesh Adaptive Direct Search: At iteration \(k \) (of the subproblem resolution), define a mesh \(M_k \), then:
 - **Global search:** Flexible step: use of heuristics to choose evaluation points on \(M_k \)
 - **Local poll:** Evaluation points chosen in a neighborhood \(M_k \subset M_{k+1} \) of the current best solution
 - **Mesh update:** If better solution found during search or poll then increase mesh parameter, else decrease it

3. Numerical tests

3.1 Application to a toy problem

- **Linear system with quadratic costs, state space of dimension 3**
- **Analytical solution available**
- **Same structure of couplings as in the maintenance problem**

3.2 Difficulties arising in problem (2)

- Presence of integer variables (number of spare parts, physical state of the components)
- Complex non-smooth dynamics

References