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Understanding the sediment dynamics using reduction 
and statistical modeling on field data

The application: 
A water intake in a coastal area, 

forced by many phenomena

Sedimentation and siltation in nearshore
channelsis a well-known issuein harborsfor
example(e.g. Figure1). They imply frequent
dredginginterventions,with high operational
costs,often hinderedby tight scheduling.

Siltation of nearshorechannels 
due to coastal morphodynamics

Figure 1: Silting of Bray Harbor, Irish Sea 

(Muir Éireann). Source: Afloat Magazine.

Power plant intakes are submitted to the same
constraints,in addition to actingassinksfor sediments
becauseof the water pumping, which attracts the
sedimentsinside.

Outside the intake, many physicalforcings
influence the sediments dynamics and
drivethem to the channel.

Inside,a numberof industrialforcings
(pumping,dredging,etc.) impact the
settling of sedimentsby their action
on the flow. Therefore, a new
bathymetryisobtained.

Figure 2: Sediment Resuspension. Source: T. Miles, 

University of New Jersey (https://www.travisnmiles.com/)

Figure 3: The first three
elements of the PODbasis
applied to the bathymetry
measurementsand the first
two associated temporal
coefficients.

ThePODconsistsof writing anapproximationof thebathymetryfield �<�:�T�á�P�;as
a finite sum of a separatevariablesfunctions product, at a given order �@�Ð�3�Û. This

would be written as �< �T�á�P 
N �Ã�Þ�@�5
�× �=�Þ �P�Ð�Þ �T . The functions �Ð�Þ �T and �=�Þ �P are

resp. called spatial modes and temporal coefficients. They are orthogonal and are
selectedsothat the order �@�Ð�3�Ûisminimum.

Eachspatial mode representsa dynamicalpattern of the morphodynamics.
The temporal variationsof the associatedtemporal coefficientsrepresenta
certainpercentageof the varianceof �< �T�á�P.

The modes �=�Þ �P�Ð�Þ �T are therefore
associatedto a represented variance
percentage,here called�^�������µ�Œ�����Ç�Œ���š���_
(see Figure 3). When increasing the
order �†�Ð�3�Û , these variance
percentages are added, giving an
increasingaccuracyrate (seeFigure4).
We choosean order �†�Ð�3�Ûassociated
to a satisfyingaccuracyrate.

Figure 4: POD on bathymetry - Accuracy rate and time-
averaged  RMSE as functions of the approximation rank.
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Let 
À
Ú�á�å �á
À�‚ be a set of forcing
parameters. We can construct a
dynamicalmodel 	� �Þfor each�=�Þ:

�=�Þ �P�6 
L 	� �Þ �=�Þ �P�5 �á�P�6 
F �P�5�á
À
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If we considerthat 
À
Ú�á�å �á
À�‚ live
in the spaceof real randomvariables
with finite second order moments,
	� �Þ can be constructed with PCE.
The latter allows a polynomial
approximationof a random variable
Yas:

�; �� �5�á�å �á�� �Ï 
L 	� �4 
E �Ã�Ü�@�5
�Ï 	� �Ü�:�� �Ü�; 
E

�Ã�5�¸�Ü�´ �Ý�¸�Ï 	� �Ü�á�Ý�:�� �Ü�á�� �Ý�; 
E�®
E 	� �5�á�å�á�Ï �� �5�á�� �6�á�å �á�� �Ï , 

where 	� �4 is the mean of �; and 	� �Â�C�<�5�á�å�á�Ï �=

represents the common contribution of the
variables�+�C�<�s�á�å �á�8�=on the variation of �; , in a
polynomialform: �:�5

�� �- �: �6
�� �. �å �: �Ï

�� �Ç

A �^�š�Œ���]�v�]�v�P�•���š�_is used to learn the PCEmodel, and a �^�‰�Œ�����]���š�]�}�v�•���š�_to
evaluateit on real scenarios. Asshownin Figure5, the fitting worksbest when
the signalshowssomeconsistency. Fora more chaoticfunction,asthe temporal
coefficient 3, the PCEfitting is poor, yet it approachesthe order of magnitude
andseemsto capturesomepeaksin the dynamics.

Figure5: BestPCEmodelsfor
the first three POD temporal
coefficientsusinga training set
of 50 members. . The �^�����•�š
�u�}�����o�_ designation
corresponds to a chosen
polynomial degree with
minimal training RMSE(Root
MeanSquaredError).

POD-PCE coupling for a 
data driven predictor

�< �T�á�P�6 
N 
Í
�Þ�@�5

�×

�=�Þ �P�6 �Ð�Þ �T


N 
Í
�Þ�@�5

�×

	� �Þ �=�Þ �P�5 �á�P�6 
F �P�5�á
À
Ú�á�å �á
À�‚ �Ð�Þ �T

To investigate the consequencesof each step of the
approximationon the final prediction, we plot the error of
eachapproximation,averagedin time, for eachgeographical
point of the channel,asshownin

Figure 6: Time-averaged  error for each approximation 
step. Evolution with the POD rank.

The POD error decreaseswhen
increasingthe rank d. However,
the PCE error increases
dramatically from Rank 2 to 3,
and becomes stationary for
higher ranks. This is due to the
fact that higher order temporal
coefficients���}�v�[�švarymuch. Asa
consequence, in order to
decreasethe forecastingerror, a
better approximation of
coefficient3 isessential.

We attempt to project the estimation of
future temporalcoefficients�=�Þ �P�6 in the
bathymetry POD basis, in order to
constructa full predictionfield as:
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