Finding a compromise between information and regret in clinical trials

Asya Metelkina and Luc Pronzato

AM: Azoth Systems LP: Laboratoire I3S (CNRS and Univ. de Nice Sophia Antipolis)

MASCOT-NUM Annual Conference 19 March 2019
Luc Pronzato

I know Luc since 2014...

Sophia Antipolis, I3S, Algorithmes: Luc works in I3S since 1992...

Luc, Antibes, sea: leisure or work?
Optimal allocations in clinical studies
...an optimal design problem...

■ 1. Compromise between information and ethics
 - Clinical studies.
 - Objectives of adaptive allocation.
 - Information, ethics and compromise criterion.

■ 2. Allocation rules converging to the optimum
 - Equivalence theorem: characterization of optimal allocation.
 - Oracle allocation rule.
 - Randomized oracle rule.

■ 3. CARA and empirical process allocation
 - CARA type allocation.
 - Allocation based on empirical measures.
 - Compromise procedures proposed in literature.

■ 4. Conclusion and perspectives
Optimal designs

Design space \mathcal{X}

Parametric or non-parametric model(s): $f(x, \theta), x \in \mathcal{X}$

Criterion G to maximize or minimize

- Choose measure $\xi = \begin{pmatrix} w_1 & \cdots & w_k \\ x_1 & \cdots & x_k \end{pmatrix}$ to optimize $G(\xi)$
- Generate a sequence $\{x_1, \ldots, x_n\}$ to (quasi-)optimize $G(x_1, \ldots, x_n)$
Clinical trials

n subjects. i-th subject:

\[X_i, T_i, Y_i \]

covariates, allocation, outcome

Assumptions:

- \(\mathbb{E}(Y_i|X_i = x, T_i = k) = \eta_k(x, \theta_k), \ Y_i \in \mathcal{Y} \subset \mathbb{R}, \ k = 1, \ldots, K. \)
- \(X_i \) are i.i.d. \(\sim \mu, \ (X_i \in \mathcal{X} \subset \mathbb{R}^d, \mu(x) \geq 0, \int_{\mathcal{X}} \mu(dx) = 1) \)
- covariate-adaptive allocations

\[\mathbb{P}(T_i = k|X_i = x) = \pi_k(x) \]

Example 1: Logistic regression.
\(\mathcal{Y} = \{0, 1\}, \mathcal{X} = [-1, 1], \ K = 2 \)

\[\mathbb{P}(Y_i = 1|X_i = x, T_i = k) = \eta_k(x, \theta_k) \]

\[\eta_k(x, \theta_k) = \frac{1}{1 + e^{-\theta_k x}} \]

\(\theta_1 = 5, \theta_2 = -5. \)
Clinical trials

n subjects. i-th subject:

\[X_i, T_i, Y_i \]

covariates, allocation, outcome

Assumptions:
- \(\mathbb{E}(Y_i|X_i = x, T_i = k) = \eta_k(x, \theta_k), \)
- \(X_i \) are i.i.d. \(\sim \mu, \)
- covariate-adaptive allocations

\[\mathbb{P}(T_i = k|X_i = x) = \pi_k(x) \]
Clinical trials

n subjects. i-th subject:

\[X_i, T_i, Y_i \]

covariates, allocation, outcome

Assumptions:

- \(\mathbb{E}(Y_i|X_i = x, T_i = k) = \eta_k(x, \theta_k) \),
- \(X_i \) are i.i.d. \(\sim \mu \),
- covariate-adaptive allocations

\[\mathbb{P}(T_i = k|X_i = x) = \pi_k(x) \]

10 subjects allocated
Clinical trials

n subjects. i-th subject:

\[X_i, T_i, Y_i \]

covariates, allocation, outcome

Assumptions:

- \(\mathbb{E}(Y_i|X_i=x, T_i=k) = \eta_k(x, \theta_k) \),
- \(X_i \) are i.i.d. \(\sim \mu \),
- covariate-adaptive allocations

\[\mathbb{P}(T_i = k|X_i = x) = \pi_k(x) \]

Example 2: Linear regression with i.i.d errors.
\(\mathcal{Y} = \mathbb{R}, \mathcal{X} = [0, 1], K = 2 \)
\(Y_i = \eta_k(X_i, \theta_k) + \epsilon_i \) if \(T_i = k \), \(\epsilon_i \perp X_i \)
\(\eta_k(x, \theta_k) = a_k + b_k x \)
\(a_1 = 0, b_1 = 10, a_2 = 5, b_2 = -4. \)
Clinical trials

n subjects. i-th subject:

\[X_i, T_i, Y_i \]

covariates, allocation, outcome

Assumptions:

- \(\mathbb{E}(Y_i|X_i = x, T_i = k) = \eta_k(x, \theta_k) \),
- \(X_i \) are i.i.d. \(\sim \mu \),
- covariate-adaptive allocations

\[\mathbb{P}(T_i = k|X_i = x) = \pi_k(x) \]
Objectives of clinical trial

Objectives:

- **Information**: to better estimate \(\theta = (\theta_1, \ldots, \theta_K) \)
- **Ethics**: to favor allocation to best treatment \(\eta^*(X_i) = \max_{k=1 \ldots K} \eta_k(X_i, \theta_k) \)

\[
Y_i | T_i = k \text{ are i.i.d with } \quad \mathbb{E}(Y_i | T_i = k) = \int_{\chi} \eta_k(x, \theta_k) \pi_k(x)\mu(dx) \]

\[
\eta_k^{\text{new}}(x, \theta_k) = \eta_k(x, \theta_k)\pi_k(x) \quad \text{or} \quad \xi = (\xi_1, \ldots, \xi_K) \in \Xi(\mu)
\]

\[
\Xi(\mu) = \{\xi = (\xi_1, \ldots, \xi_K) \mid \xi_k \text{ is } \mu - \text{a.c.}, \sum_{k=1}^K \xi_k = \mu, \xi_k \geq 0\}
\]

is a convex set.
Objectives:

Information: to better estimate \(\theta = (\theta_1, \ldots, \theta_K) \)

Maximize \(\Psi(M(\xi, \theta)) \):

- \(\Psi \) strictly concave, Lowener increasing, differentiable
- \(M(\xi, \theta) = \sum_{k=1}^{K} \int_X M_k(x, \theta_k) \xi_k \, dx \) Fisher information.

Example: \(\Psi(M) = \log \det(M), \quad \Psi(M) = -\text{tr}(M^{-q}), \quad q \in (0, +\infty) \).

Motivation:
Asymptotic normality of ML estimator \(\hat{\theta}_n \),

\[
\sqrt{n}(\hat{\theta}_n - \theta) \to \mathcal{N}(0, M(\xi, \theta)^{-1})
\]

Unbiased estimators: Cramer-Rao bound for variance.
Optimal Allocation

Asya Metelkina and Luc Pronzato

Compromise between information and ethics

Allocation rules converging to the optimum

CARA and empirical process allocation

Information

Objectives:

- **Information**: to better estimate \(\theta = (\theta_1, \ldots, \theta_K) \) \(\Rightarrow \) \(\max_{\xi \in \Xi(\mu)} \psi(M(\xi, \theta)) \).

\(\psi \) concave, \(\Xi(\mu) \) convex set \(\Rightarrow \) \(\xi^*(x, \theta) = \arg \max_{\xi \in \Xi(\mu)} \psi(M(\xi, \theta)) \)

Example 1: logistic regression

\(Y \in \{0, 1\}, X = [-1, 1], \mu = \mathcal{U}([-1, 1]), \theta_k \in \mathbb{R}, \) no covariates in common.

\(\Rightarrow \) \(M(\xi, \theta) \) has a block structure:

\[
M(\xi, \theta) = \begin{pmatrix}
\int_0^1 \frac{x^2}{\eta(x, \theta_1)(1-\eta(x, \theta_1))} \xi_1(dx) & 0 \\
0 & \int_0^1 \frac{x^2}{\eta(x, \theta_2)(1-\eta(x, \theta_2))} \xi_2(dx)
\end{pmatrix}
\]

\(\psi(M(\xi, \theta)) = \log(\det(M(\xi, \theta))) = \sum_{k=1}^2 \log \left(\int_0^1 \frac{x^2 \pi_k(x)}{\eta_k(x, \theta_k)(1-\eta_k(x, \theta_k))} dx \right) \)
Information

Objectives:

- **Information**: to better estimate $\theta = (\theta_1, \ldots, \theta_K)$ \(\Rightarrow\) \(\max_{\xi \in \Xi(\mu)} \Psi(M(\xi, \theta))\).

\(\Psi\) concave, \(\Xi(\mu)\) convex set \(\Rightarrow\) \(\xi^*(x, \theta) = \arg\max_{\xi \in \Xi(\mu)} \Psi(M(\xi, \theta))\)

Example 2: linear regression with i.i.d. \(N(0, 1)\) errors.
\(\mu = \mathcal{U}([0, 1]). \) \(\eta_k(x, \theta_k) = a_k + b_k x,\) no common parameters.
\(\Rightarrow\) \(M(\xi, \theta)\) has a block structure:

\[
M(\xi) = \begin{pmatrix}
\int_0^1 \xi_1(dx) & \int_0^1 x \xi_1(dx) & 0 & 0 \\
0 & 0 & 0 & 0 \\
\int_0^1 x \xi_1(dx) & \int_0^1 x^2 \xi_1(dx) & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & \int_0^1 \xi_2(dx) & \int_0^1 x \xi_2(dx) \\
0 & 0 & \int_0^1 x \xi_2(dx) & \int_0^1 x^2 \xi_2(dx)
\end{pmatrix}
\]
Objectives:

- Information: to better estimate \(\theta = (\theta_1, \ldots, \theta_K) \) \(\Rightarrow \max_{\xi \in \Xi(\mu)} \Psi(M(\xi, \theta)). \)

\(\Psi \) concave, \(\Xi(\mu) \) convex set \(\Rightarrow \xi^*(x, \theta) = \arg \max_{\xi \in \Xi(\mu)} \Psi(M(\xi, \theta)) \)

Example 2: linear regression with i.i.d. \(N(0, 1) \) errors.
\(\mu = \mathcal{U}([0, 1]) \). \(\eta_k(x, \theta_k) = a_k + b_k x \), no common parameters.
\(\Rightarrow M(\xi, \theta) \) has a block structure:

\[
M(\xi) = \begin{pmatrix}
m_1 & m_2 & 0 & 0 \\
m_2 & m_3 & 0 & 0 \\
0 & 0 & 1 - m_1 & \frac{1}{2} - m_2 \\
0 & 0 & \frac{1}{2} - m_2 & \frac{1}{3} - m_3 \\
\end{pmatrix}
\]

\[
m_1 = \int \pi_1(x) dx, \quad m_2 = \int x \pi_1(x) dx, \quad m_3 = \int x^2 \pi_1(x) dx.
\]

\(\Psi(M(\xi)) = \log \det(M(\xi)) = \log \left(m_1 \cdot m_3 - m_2^2 \right) + \log \left((1 - m_1)(\frac{1}{3} - m_3) - \left(\frac{1}{2} - m_2 \right)^2 \right) \)
Objectives:

- **Information**: to better estimate \(\theta = (\theta_1, \ldots, \theta_K) \) \(\Rightarrow \max_{\xi \in \Xi(\mu)} \Psi(M(\xi, \theta)) \).

\(\Psi \) concave, \(\Xi(\mu) \) convex set \(\Rightarrow \xi^*(x, \theta) = \arg\max_{\xi \in \Xi(\mu)} \Psi(M(\xi, \theta)) \)

Example 3: linear regression with i.i.d. \(N(0, 1) \) errors.
\(\mu = \mathcal{U}([-1, 1]) \). \(\eta_k(x, \theta_k) = a + b_k x \), with one common parameter.

\[
M(\xi) = \begin{pmatrix}
1 & m_2 & -m_2 \\
m_2 & m_3 & 0 \\
-m_2 & 0 & \frac{1}{3} - m_3
\end{pmatrix}
\]

\(m_2 = \frac{1}{2} \int_{\mathbb{R}}^1 x \pi_1(x) dx \),
\(m_3 = \frac{1}{2} \int_0^1 x^2 \pi_1(x) dx \).
Regret and reward

Objectives:

- **Ethics**: to favor allocation to best treatment $\eta^*(X_i) = \max_{k=1,...,K} \eta_k(X_i, \theta_k)$

Minimize the regret

$$R(\xi, \theta) = \sum_{k=1}^{K} \int_{\mathcal{X}} (\eta^*(x, \theta) - \eta_k(x, \theta)) \xi_k(dx)$$

Maximize the reward

$$\Phi(\xi, \theta) = \sum_{k=1}^{K} \int_{\mathcal{X}} \eta_k(x, \theta) \xi_k(dx)$$

Best treatment allocation:

$$\frac{d\xi_k}{d\mu}(x, \theta) = \pi_k(x, \theta) = \begin{cases} 1, & \text{if } \eta_k(x, \theta_k) = \eta^*(x, \theta) \\ \frac{1}{m}, & \text{if } m \text{ ties} \\ 0, & \text{otherwise} \end{cases}$$
Information, ethics and compromise

Problem: information OR ethics? May be contradictory!

Example: \(Y_i \in \{0, 1\} \), \(\eta_i(x, \theta) = \theta_i \), no covariates

Information Neyman allocation: \(\mathbb{P}(T_i = 1) = \frac{\sqrt{\theta_1(1-\theta_1)}}{\sqrt{\theta_1(1-\theta_1)} + \sqrt{\theta_2(1-\theta_2)}} \):

- maximizes the power of Wald’s test \((\text{with statistics } \frac{\hat{\theta}_n - \theta}{\sqrt{\theta_n}}) \).
- favors inferior treatment if \(\theta_1 + \theta_2 > 1 \).

Ethics Best treatment allocation: \(\mathbb{P}(T_i = 1) = \delta_{\theta_1 \geq \theta_2} \) no information about the worth treatment parameters.

Solution: Compromise criterion = convex combination of information and reward:

\[
\text{Maximize } (1 - \alpha) \cdot \Psi(M(\xi, \theta)) + \alpha \cdot \Phi(\xi, \theta), \quad \alpha \in (0, 1)
\]

Equivalent to \[
\begin{cases}
\max \Psi(M(\xi, \theta)) \\
\Phi(\xi, \theta) \geq \tau(\alpha, \theta).
\end{cases}
\]
Optimal allocation measure

\[K = 2. \text{ Optimal allocation measure: } \xi^*_\alpha(\theta) = \arg \max_{\xi \in \Xi(\mu)} H_\alpha(\xi, \theta) \]

Asymptotic optimality criterion:

\[
H_\alpha(\xi, \theta) = (1 - \alpha) \psi \left(\sum_{k=1}^{2} \mathcal{M}_k(\xi_k, \theta) \right) + \alpha \sum_{k=1}^{2} \phi_k(\xi_k, \theta).
\]

\[
\mathcal{M}_k(\theta, \xi_k) = \int_X M_k(x, \theta) \xi_k(dx) \quad \text{and} \quad \phi_k(\theta, \xi_k) = \int_X \eta_k(x, \theta) \xi_k(dx).
\]

Convex set of allocation measures

\[
\Xi(\mu) = \{ \xi = (\xi_1, \xi_2) \in \mathcal{M}_X^2 \mid \xi_1 + \xi_2 = \mu, \xi_1 \geq 0, \xi_2 \geq 0, \xi_1, \xi_2 \text{ a.c. wrt } \mu \}.
\]

Maximize concave function \(H_\alpha(\xi, \theta) \) on a convex set \(\Xi(\mu) \Rightarrow \text{Equivalence Theorem} \)
Equivalence Theorem

Under differentiability conditions:
\(\xi^*_\alpha(\theta) \) can be characterized through directional derivatives of \(H_\alpha \).

Equivalence theorem

\(\xi^*_\alpha = \arg \max_{\xi \in \Xi(\mu)} H_\alpha(\xi, \theta) \) is characterized by the function \(\Delta_{12}(\xi, x, \theta) \):

1. \(\Delta_{12}(\xi, x, \theta) \geq 0 \quad \xi_1^*-\text{a.s.}, \quad \Delta_{12}(\xi, x, \theta) \leq 0 \quad \xi_2^*-\text{a.s.} \)

2. There exist \(X_1, X_2 \subset X \) such that
 - \(\xi_1^* = \mu \) on \(X_1 \), \(\xi_2^* = \mu \) on \(X_2 \),
 - \(\inf_{x \in X_1} \Delta_{12}(\xi, x, \theta) \geq 0 \), \(\sup_{x \in X_2} \Delta_{12}(\xi, x, \theta) \leq 0 \)
 - \(\Delta_{12}(\xi, x, \theta) = 0 \), if \(x \in X \setminus (X_1 \cap X_2) \).

- Here \(\Delta_{12}(\xi, x, \theta) = G_1(\xi, x, \theta) - G_2(\xi, x, \theta) \).
- Directional derivatives (in direction of point mass at \(x \))

\[
G_1(\xi, x, \theta) = \lim_{\gamma \to 0^+} \gamma^{-1} [H_\alpha(\xi + \gamma(\delta_x, 0), \theta) - H_\alpha(\xi, \theta)]
\]

\[
G_2(\xi, x, \theta) = \lim_{\gamma \to 0^+} \gamma^{-1} [H_\alpha(\xi + \gamma(0, \delta_x), \theta) - H_\alpha(\xi, \theta)]
\]
Optimal Allocation
Asya Metelkina and Luc Pronzato
Compromise between information and ethics
Allocation rules converging to the optimum
CARA and empirical process allocation

Logistic regression example

\[X = [0, 1] \text{ and } \mu = \mathcal{U}([0, 1]). \quad \Psi(M) = \log \det(M). \]

Logistic regression \(\eta_k(x, \theta) = 0.25 + 0.5 \cdot \frac{1}{1 + \exp(-(\theta_{k1}-x)\theta_{k2})} \).

\[\theta = (\theta_1, \theta_2), \quad \theta_k \in \mathbb{R}^2, \ k = 1, 2. \]

Figure: Left: Statistical model of response \(\eta_1(x, \theta_1) \) et \(\eta_2(x, \theta_2) \).
Middle: Function \(\Delta_{12}(\xi_2, x, \theta) \) from Equivalence Theorem for \(\alpha = 0.7 \).
Right: Ensembles \(X_1 \) (treatment 1) et \(X_2 \) (treatment 2) as function of \(\alpha \).
Rule 1. Oracle allocation rule

(necessitates the knowledge of μ, θ and construction of $\xi^*_\alpha(\theta)$)

$$\mathbb{P}(T_{n+1} = 1|X_{n+1} = x) = \pi^*_\alpha(x, \theta)$$

with $\pi^*_\alpha(x, \xi, \theta) = \frac{d\xi^*_1,\alpha}{d\mu}(x, \theta)$.

Remark: $\pi^*_\alpha(x, \theta) = 1$ on a subset $x \in X_0 \subset X$ is possible.

Example:
$$\mathbb{P}(T_i = 2[X_i = x]) = 1 \text{ if } x \in [0, A] \cap (B, C),$$
$$\mathbb{P}(T_i = 1[X_i = x]) = 1 \text{ if } x \in (A, B) \cap (C, 1).$$
Empirical information and reward

Empirical compromise criterion:

\[(1 - \alpha) \cdot \Psi(M_n(\theta)) + \alpha \cdot (\Phi_n(\theta)), \; \alpha \in (0, 1)\]

Empirical reward:

\[\Phi_n(\theta) = \frac{1}{n} \sum_{k=1}^{2} \sum_{i=1, T_i = k}^{n} \eta_k(X_i, \theta)\]

Empirical information

\[\Psi(M_n(\theta)) \quad \text{with} \quad M_n(\theta) = \frac{1}{n} \sum_{k=1}^{2} \sum_{i=1, T_i = k}^{n} M_k(X_i, \theta)\]

- \(\delta_{T_i = 1} X_i\) are i.i.d. \(\sim \xi^*_1(\theta)\).
- Empirical allocations \(\hat{\xi}_{\alpha n} = \frac{1}{n} \sum_{i=1}^{n} (\delta_{T_i = 1}, \delta_{T_i = 2})\) are asymptotically optimal:

\[H_\alpha(\hat{\xi}_{\alpha n}, \theta) \rightarrow H_\alpha(\xi^*_\alpha(\theta), \theta) \; \text{a.s.}\]
Optimal Allocation

Asya Metelkina
and Luc Pronzato

Compromise between information and ethics

Allocation rules converging to the optimum

CARA and empirical process allocation

Randomized oracle randomization

\[\pi^*_\alpha(x, \theta) = 1 \] for \(x \in X_0 \) with \(\mu(X_0) > 0 \) \(\Rightarrow \) prediction bias.

Optimal allocation measure under a constraint of randomization level \(\beta \in (0, 1) \):

\[\xi^*_{\alpha, \beta}(\theta) = \beta \xi_{\mu} + \tilde{\xi}_{\alpha, \beta}(\theta) \quad \text{with} \]

\[\xi_{\mu} = \left(\frac{\mu}{2}, \frac{\mu}{2} \right) \quad \text{and} \quad \tilde{\xi}_{\alpha, \beta}(\theta) = \arg \max_{\xi \in \Xi(\mu(1-\beta))} H_{\alpha}\left(\beta \xi_{\mu} + \xi, \theta \right). \]

Randomized Oracle Rule 1.

\[\mathbb{P}(T_{n+1} = 1 | X_{n+1} = x) = \frac{\beta}{2} + \pi^*_{\alpha, \beta}(x, \theta) \]

with \(\pi_{\alpha, \beta}(x, \theta) = \frac{d\tilde{\xi}_{1, \alpha, \beta}}{d\mu}(x, \theta). \)
Example of logistic regression

\[\mathcal{X} = [0, 1]. \; \theta = (\theta_1, \theta_2), \; \theta_k \in \mathbb{R}^2, \; k = 1, 2. \]

Logistic regression \(\eta_k(x, \theta) = a_k + 0.5 \cdot \frac{1}{1 + \exp(-\theta_{k,1} - \theta_{k,2}x)} \).

\(a_1 = 0.1, \; a_2 = 0.25 \)

Figure: Left: Outcome models.
Right: Randomization level \(\beta = 0.2 \), deterministic part of allocation function \(\tilde{\xi}_{\alpha, \beta}(\theta) \) as function of \(\alpha \).
Randomized *oracle* rule

\(\alpha, \beta \in (0, 1) \). Asymptotic properties of:

- Empirical allocations \(\hat{\xi}_n = \frac{1}{n} \sum_{i=1}^{n} T_i X_i \) converge to \(\xi_{\alpha, \beta}^* \).
- Compromise criterion is asymptotically optimal: \(H(\hat{\xi}_n, \theta) \xrightarrow{n \to \infty} H(\xi_{\alpha, \beta}^*, \theta) \).
- Allocation proportions \(\rho_n = \frac{1}{n} \sum_{i=1}^{n} T_i \) are consistent and asymptotically normal:
 \[
 \rho_n \xrightarrow{n \to \infty} \rho_k^*(\theta) \quad \text{where} \quad \rho_k^*(\theta) := \xi_k^*(X, \theta).
 \]
 \[
 \sqrt{n} \left(\rho_n - \rho_k^*(\theta) \right) \xrightarrow{d} \mathcal{N}(0, \Sigma^*) \quad \Sigma^* = \text{diag}(\rho_k^*(\theta)) - \rho_k^*(\theta)\rho_k^*(\theta)^t
 \]
- Bounds on regret(reward) and information.
Adaptive sequential allocations:

Subjects arrive sequentially ⇒ can use past covariates, allocations, outcomes information.

Allocation functions: \(P(T_n = k | X_n = x, \mathcal{F}_n) \)

where \(\mathcal{F}_n = \sigma(X_1, \ldots, X_{n-1}, T_1, \ldots, T_{n-1}, Y_1, \ldots, Y_{n-1}) \)

The sequence \((T_1, \ldots, T_n) \) is a stochastic process.

Motivation:

\(K = 2, \mathcal{Y} = \{0, 1\}, \eta_k(x) = \theta_k, \theta_k \in [0, 1], N_{n,1} := \sum_{i=1}^{n} (T_i = 1). \)

Variance of \((N_{n,1} - \frac{n}{2}) \) is of order \(n \) for \(P(T_n = 1) = \frac{1}{2}, \)

bounded Biased Coin Design BCD\((p), \quad p \in (\frac{1}{2}, 1] \)

\[
P(T_{n+1} = 1 | \mathcal{F}_n) = \begin{cases}
 p, & 2N_{n,1} < n \\
 \frac{1}{2}, & 2N_{n,1} = n \\
 (1 - p), & 2N_{n,1} > n
\end{cases}
\]

[Efron1971],[Markaryan,Rosenberger 2010]
Covariate Adjusted Response Adaptive designs

\[\mu \text{ known, } \theta \text{ unknown } \Rightarrow, \text{ use } \hat{\theta}_n \text{ (well defined } n > n_0, \beta > 0) \]

[Zhang et al.'07]

- **Rule 2** Covariate-Adjusted Response Adaptive targeting \(\xi^*_\alpha(\theta) \):

\[\mathbb{P}(T_{n+1} = 1 | X_{n+1} = x, \mathcal{F}^n) = \pi(x, \hat{\theta}_n) \]

here \(\pi \) is computed from \(\xi^*_{\alpha, \beta}(\hat{\theta}_n) \).

Asymptotic properties:

- Consistency and asymptotic normality of \(\hat{\theta}_n \):

- Asymptotic optimality of \(\hat{\xi}_{n} = \frac{1}{n} \sum_{n=1}^{n} (\delta_{T_i=1} \delta_{X_i}(.), \delta_{T_i=2} \delta_{X_i}(.)) \)

- Asymptotic properties of proportions.
Optimal Allocation
Asya Metelkina and Luc Pronzato

Compromise between information and ethics
Allocation rules converging to the optimum
CARA and empirical process allocation

allocation based on empirical process.

- \(\theta \) known, \(\mu \) unknown \(\Rightarrow \) replace \(\xi_\alpha^*(\theta) \) by \(\hat{\xi}_{n} \).

- **Rule 3.** Allocation based on empirical process

\[
\mathbb{P}(T_{n+1} = 1 | T^n, X^n, X_{n+1} = x) = \pi_n(x, \theta)
\]

with \(\pi(x, \xi, \theta) = \frac{d\xi_1}{d\mu}(x, \theta) \) et \(\hat{\xi}_{n} = \frac{1}{n} \sum_{1}^{n}(\delta_{T_i=1} \delta_{X_i}, \delta_{T_i=2} \delta_{X_i}) \).

- Asymptotic optimality: \(H_\alpha(\hat{\xi}_{n}, \theta) \rightarrow H_\alpha(\xi_\alpha^*, \beta(\theta), \theta) \) a.s.

- Simulations: \(\Rightarrow \) allocation proportions \(\rho_n \) very less that for rules 1 and 2.

- Randomization \(\beta > 0 \), \(\theta \) and \(\mu \) are unknown.

- **Rule 4.** Empirical procedure of CARA type use both \(\hat{\xi}_{n} \) and \(\hat{\theta}_n \)

\[
\mathbb{P}(T_{n+1} = 1 | \mathcal{F}^n, X_{n+1} = x) = \pi_n(x, \hat{\theta}_n).
\]
Logistic regression example

\[\beta = 0, \ X = [0, 1]. \ \theta = (\theta_1, \theta_2), \ \theta_k \in \mathbb{R}^2, \ k = 1, 2. \]

Logistic regression \[\eta_k(x, \theta) = \frac{1}{1 + \exp(-\theta_k,1 - \theta_k,2 x)}, \ \theta_k = (2, 10). \]

![Logistic regression example](image)

Figure: Variability of treatments proportions:
dotted = rule 3, red = rule 1, blue = limit law for rule 1.
Comparison with procedures proposed in literature

Ad-hoc rules proposed in literature (logistic regression)

- **Allocation based on covariates-adjusted odds ratio** [Rosenberger et al.’01]
 \[
P(T_{n+1} = 1 \mid F_n, X_{n+1} = x) = \frac{\eta_1(x, \hat{\theta}_n)(1 - \eta_2(x, \hat{\theta}_n))}{(1 - \eta_1(x, \hat{\theta}_n))\eta_2(x, \hat{\theta}_n)} \text{ odds ratio.}
\]

- **Modification of allocation rule from** [Hu&Zhu&Hu’15]
 \[
P(T_{n+1} = 1 \mid F_n, X_{n+1} = x) \frac{d_1^a \cdot e_1^b}{d_1^a \cdot e_1^b + d_2^a \cdot e_2^b}
\]
 with
 - \(a > 0, b > 0\).
 - **Information** \(d_k = d_k(\xi_n, x, \theta) = \text{tr}(M^{-1}(\xi_n, \theta)M_k(x, \theta))\)
 - **Inverse of reward** \(e_k = e_k(x, \theta) = 1/(1 - \eta_k(x, \theta))\).
Example: Logistic regression.

![Graph](image)

Figure: Red curve $\Psi(M(\xi^*_\alpha))$ vs. $R(\xi^*_\alpha)$ parametrized by α.

- \star = allocation based on odd rations [Rosenberger et al.'01].
- \triangledown = modified procedure [Hu&Zhu&Hu'15] (from left to right $a = 1, b = 10, 6, 4, 3$.)

Optimal Allocation

Asya Metelkina and Luc Pronzato

Compromise between information and ethics

Allocation rules converging to the optimum

CARA and empirical process allocation
Conclusion and perspectives

Fo more details see: [A. Metelkina, L. Pronzato “Information-regret compromise in covariate-adaptive treatment allocation” AoS’17]

Perspectives:

- Adaptation of efficient allocation procedure [Zhang&Hu AMJCU’09].
- Other forms of regret/reward, e.g. quadratic in \((\eta^* - \eta_k)\).
- Approximate computation of \(\theta \mapsto \Delta_{12}(x, \xi_\alpha^*(\theta), \theta)\).
- \(\alpha = \alpha(\tau') \) for \(R(\xi_\alpha^*) \leq \tau'\), so \(\Phi(\xi, \theta) \geq \tau(\tau', \theta)\).
- Sequence of \(\alpha_n\) tending to 0. At which speed?
- Bayesian approach (wrt to \(\theta\))