Brief overview on
Stepwise Uncertainty Reduction for computer experiments

Emmanuel Vazquez
March 19, 2010
1 Stepwise Uncertainty Reduction

- Framework: Bayesian sequential design of computer experiments
- Let ϕ be a quantity of interest that depends on a simulator with inputs in X and outputs in Z
- Objective: make inference about ϕ from a finite set of experiments on the simulator (runs of the computer model)
- Usual Bayesian approach to describe such experiments: sequence of random variables $Z_1, Z_2, \ldots \in \mathbb{Z}$ modeling the outcomes of the experiments at points $X_1, X_2, \ldots \in \mathbb{X}$, using a prior distribution reflecting our belief about the simulator
• X_1 may be chosen according to an arbitrary distribution

• For all $n = 1, 2, \ldots$, X_{n+1} is a decision rule, which may depend on the information

$$I_n = \{(X_1, Z_1), \ldots, (X_n, Z_n)\}$$

collected after n experiments

• The Z_is have a prior distribution defined through one or several random processes

• Particular case of a deterministic computer model $f : \mathbb{X} \to \mathbb{Z}$: we assume $Z_i = \xi(X_i)$, for all $i = 1, 2, \ldots$, where ξ is a random process that models f

• The sequence of decision rules $\underline{X} = (X_1, X_2, \ldots)$ is the sampling strategy
• Given an estimator $\hat{\phi}_n$ of ϕ that depends on I_n, how to choose X?

• Starting point of the construction of a SUR strategy:

\sim a statistic H_n based on $\hat{\phi}_n$ measuring (residual) uncertainty about ϕ given I_n (DeGroot, 1962, Uncertainty, information and sequential experiments)

• H_n may be viewed as a “distance” between ϕ and $\hat{\phi}_n$

• Residual uncertainty H_n is non-negative; $H_n = 0$ corresponds to the absence of uncertainty
Illustrative examples

1. **Approximation** of a deterministic computer model $f : \mathbb{X} \rightarrow \mathbb{R}$
 - f modeled using a GP ξ and $Z_i = \xi(X_i)$
 - Consider the kriging predictor $\hat{\xi}_n = E_n(\xi) = E(\xi \mid I_n)$
 - Measures of uncertainty:
 - **IMSE:** $H_n^{(1)} = E_n\left(\|\xi - \hat{\xi}_n\|^2_{L^2(\mathbb{X}, \mu)}\right) = \int_{\mathbb{X}} \sigma_n(x)^2 \mu(dx)$, where $\sigma_n(x)^2$ is the kriging variance at $x \in \mathbb{X}$
 - **MMSE:** $H_n^{(2)} = \sup_{\mathbb{X}} \sigma_n \geq 1/\mu(\mathbb{X}) H_n^{(1)}$

2. **Maximization** of $f : \mathbb{X} \rightarrow \mathbb{R}$
 - $M = \sup_{\mathbb{X}} \xi$, $Z_i = \xi(X_i)$ and $M_n = Z_1 \lor \cdots \lor Z_n$
 - Measure of uncertainty: $H_n = E_n(M - M_n)$
• A SUR strategy consists in selecting the next observation location using the rule

\[X_{n+1} = \arg \min_{x \in X} J_n(x) \]

where \(J_n \) is called sampling criterion/acquisition function, and is defined by

\[J_n : x \mapsto E_n(H_{n+1} | X_{n+1} = x) \]

(note that the expectation in \(J_n \) is with respect to \(Z_{n+1} \) when \(X_{n+1} = x \))

• We can also define a notion of information gain function:

\[G_n : x \in X \mapsto H_n - J_n(x) \]

• Bect et al. 2018 also define the notion of quasi-SUR strategies in the case of imperfect minimization of \(J_n \): given a non-negative sequence \((u_n)_{n \in \mathbb{N}} \) with \(u_n \searrow 0 \), choose \(X_{n+1} \) such that \(J(X_{n+1}) \leq \inf_{X} J_n + u_n \)
Side note: origins of SUR

- For **sequential design of numerical experiments**, idea proposed by myself and my co-authors for optimization and reliability problems (V. & Piera-Martinez, 2007; Villemonteix et al., 2008; V. & Bect, 2009)

- The parents: **Stepwise Entropy Reduction** for shape recognition (Geman & Jedynak, 1993), and **active learning** (MacKay 1992; Cohn et al. 1996)

- Many greedy Bayesian methods for **risk minimization/utility maximization** can actually be viewed as SUR strategies.
2 Examples of SUR criteria from the literature of optimization

Expected improvement (Mockus, Zilinksas ~ 1970)

- Objective: given a compact set $X \subset \mathbb{R}^d$ and a smooth function $f : X \to \mathbb{R}$, estimate $M = \sup_X f$ using the estimator $M_n = f(X_1) \lor \cdots \lor f(X_n)$

- The efficiency of the optimization strategy \underline{X} at iteration n can be measured using the loss function

$$\varepsilon_n(\underline{X}, f) = M - M_n$$
• Measure of residual uncertainty about M:

$$H_n = \mathbb{E}_n(\varepsilon_n(X, \xi)) = \mathbb{E}_n(M - M_n)$$

• SUR strategy:

$$X_{n+1} = \arg \min_{x \in \mathbb{X}} \mathbb{E}_n\left(H_{n+1} \mid X_{n+1} = x\right)$$

• In terms of expected gain/information gain:

$$X_{n+1} = \arg \max_{x \in \mathbb{X}} H_n - \mathbb{E}_n\left(H_{n+1} \mid X_{n+1} = x\right)$$

$$= \arg \max_{x \in \mathbb{X}} \mathbb{E}_n(M - M_n) - \mathbb{E}_n\left(M - M_{n+1} \mid X_{n+1} = x\right)$$

$$= \arg \max_{x \in \mathbb{X}} \mathbb{E}_n\left(M_{n+1} - M_n \mid X_{n+1} = x\right)$$

• $\rho_n(x) = \mathbb{E}_n\left(M_{n+1} - M_n \mid X_{n+1} = x\right)$ is called the expected improvement (EI) sampling criterion (Mockus, Zilinksas, 1970-1980)
Expected integrated expected improvement

- In a global optimization problem, it is generally of interest to obtain a good approximation of both $M = \max_X f$ and $x^* = \arg \max_X f$.

- The loss function $\varepsilon_n(X, f) = M - M_n$ does not measure directly the distance of x_n^* to x^* (with x_n^* such that $\xi(x_n^*) = M_n$).
However, note that $\varepsilon_n(X, f) = M - M_n \propto \lambda(X) (M - M_n)$

→ coarse measure of the uncertainty about the pair (M, x^*)
Consider instead the integral loss \(\varepsilon_n(X, f) = \int_X (f(x) - M_n) + \lambda(dx) \)

\(\varepsilon_n \) gets smaller when uncertainty about \(x^* \) decreases.
• Then, a SUR decision rule for choosing a new evaluation point X_{n+1} can be written as

$$X_{n+1} = \arg \min_{x \in X} E_n \left(\int_X (\xi(y) - M_{n+1})^+ \, dy \mid X_{n+1} = x \right)$$

$$= \arg \min_{x \in X} E_n \left(\int_X E_{n+1}((\xi(y) - M_{n+1})^+) \, dy \mid X_{n+1} = x \right)$$

$$= \arg \min_{x \in X} \nu_n(x) := E_n \left(\int_X \rho_{n+1}(y) \, dy \mid X_{n+1} = x \right)$$

• We call ν_n the Expected Integrated Expected Improvement (EI^2) (V. & Bect 2014)
Large expected improvement in a small region, smaller expected improvement over a large region of the search domain → here, ψ_n favors better exploration than ρ_n
Knowledge Gradient (Frazier et al. 2008)

- Consider a **stochastic computer model** with scalar output \(\sim \) observation model:

\[
Z_i \mid \xi \sim \mathcal{N}(\xi(X_i), \sigma^2), \quad i = 1, 2, \ldots
\]

with \(\xi \mid m, k \sim \text{GP}(m, k) \)

- Objective: estimate \(M = \sup_X \xi \)

- Which loss function for this problem?

\[
\varepsilon_n(X, \xi) = M - M_n \leftarrow \xi(X_n^*)
\]

where \(X_n^* \) is an estimator of \(X^* = \arg \max_X \xi(x) \), for instance:

\[
X_n^* = \arg \max_X \hat{\xi}_n(x)
\]
• Measure of uncertainty: $H_n = E_n(M - \xi(X_n^*))$

• Then, a SUR strategy for this loss function may be written as

$$X_{n+1} = \arg \max_X H_n - E_n(H_{n+1} \mid X_{n+1} = x)$$

$$= \arg \max_X E_n(\xi(X_{n+1}^*) - \xi(X_n^*) \mid X_{n+1} = x)$$

$$= \arg \max_X E_n(\xi(X_{n+1}^*) \mid X_{n+1} = x)$$

$$= \arg \max_X E_n(E_{n+1}\{\xi(X_{n+1}^*)\} \mid X_{n+1} = x)$$

$$= \arg \max_X E_n(\hat{\xi}_{n+1}(X_{n+1}^*) \mid X_{n+1} = x)$$

• The sampling criterion $\rho_n(x) = E_n(\hat{\xi}_{n+1}(X_{n+1}^*) \mid X_{n+1} = x) - \hat{\xi}_n(X_n^*)$ is called the Knowledge Gradient (Frazier et al. 2008)
Expected hyper-volume improvement (Emmerich 2005)

- **Multi-objective optimization**: consider a set of functions $f_j : \mathbb{X} \rightarrow \mathbb{R}$, \(j = 1, \ldots, p\), to be minimized

- **Objective**: build an approximation of the Pareto front and of the set of corresponding solutions

\[
\Gamma = \{ x \in \mathbb{X} : \nexists \ x' \in \mathbb{X} \text{ such that } f(x') \prec f(x) \},
\]

where \prec stands for the Pareto domination rule defined by

\[
y = (y_1, \ldots, y_p) \prec z = (z_1, \ldots, z_p) \iff \begin{cases} \forall i \leq p, \quad y_i \leq z_i, \\ \exists j \leq p, \quad y_j < z_j. \end{cases}
\]
Given evaluation results $z_1 = f(X_1), \ldots, z_n = f(X_n) \in \mathbb{R}^p$, define a set of dominated solutions:

$$D_n = \{ y \in B; \exists i \leq n, f(X_i) \prec y \} ,$$
• Use the increase of the volume of the dominated region as information gain

\[G_n(X_{n+1}) = |D_{n+1} \setminus D_n| = |D_{n+1}| - |D_n|, \]

\[\sim \text{expected hyper-volume improvement}\]
(Emmerich 2005)

• Extended in (Feliot et al. 2015) to deal with constrained multi-objective problems and in (Feliot et al. 2018) to deal with user preferences for the exploration of a Pareto front
3 Examples from the literature of reliability

• Let $f : \mathbb{X} \rightarrow \mathbb{R}$ be a deterministic computer model, $u \in \mathbb{R}$, and consider the excursion set

$$\Gamma = \{x \in \mathbb{X} : f(x) > u\}$$

• An estimator $\hat{\Gamma}_n$ of Γ can be obtained by building an approximation $\eta_n : \mathbb{X} \rightarrow \{0, 1\}$ of the excess indicator $\mathbbm{1}_{f > u}$ from I_n

• For instance, we could use a support vector machine to build η_n (SMART method, Deheeger and Lemaire, 2007)
• Or we can use a GP ξ as a model of f and set

$$\eta_n(x) = 1_{p_n(x)>1/2} = 1_{\hat{\xi}_n(x)>u}$$

where p_n is the posterior excursion probability:

$$p_n : x \in X \mapsto P_n\{\xi(x) > u\}$$

• Or we can use the notion of conservative estimates (Azzimonti et al. 2018): for a high probability β, define

$$\hat{\Gamma}_n^\beta = \arg\min_{Q \in Q_{n,\beta}} \mu(Q)$$

where $Q_{n,\beta}$ is the family of Vorob’ev quantiles $Q_{n,\rho} = \{p_n \geq \rho\}$, $\rho \in [0, 1]$, such that $P_n(Q_{n,\rho} \supset \Gamma) \geq \beta$
• Related objectives:

- given a measure/probability \(\mu \) over \(\mathbb{X} \), estimate the volume of the excursion set/probability of failure \(\alpha = \mu(\Gamma) \), in which case a natural estimator for \(\alpha \) is the posterior mean

\[
\hat{\alpha}_n = E_n(\alpha) = E_n \left(\int_X 1_{\xi > u} d\mu(x) \right) = \int_X p_n d\mu
\]

- quantile estimation: given a random input \(X \in \mathbb{X} \) and \(\alpha \in [0, 1] \) estimate

\[
q_\alpha = \inf \{ z \in \mathbb{R}; P(f(X) \leq z) \geq \alpha \},
\]

- Given a stochastic simulator \(x \mapsto P_x = \mathcal{N}(\xi(x), \sigma^2) \), estimate \(\alpha = \int_X P_x([u, \infty[)d\mu(x) \) (Stroh et al. 2017)
• Uncertainty measures?

• Assuming f is modeled using a random process ξ, V. and Piera-Martinez 2007, Bect et al 2012, Chevalier et al. 2014:

- $H_n^{(1)} = \text{var}_n(\alpha) = E_n \left((\alpha - \hat{\alpha}_n)^2 \right)$
- $H_n^{(2)} = \int_X E_n \left[(\mathbb{1}_{\xi > u} - \mathbb{1}_{\hat{\xi}_n > u})^2 \right]^{1/2} d\mu$
- $H_n^{(3)} = E_n \left(\mu(\Gamma \triangle \hat{\Gamma}_n) \right) = E_n \left(\int_X (1_{\xi > u} - 1_{\hat{\xi}_n > u})^2 d\mu \right) = \int_X p_n(1 - p_n) d\mu$
- ...

• Note that $\left(H_n^{(1)} \right)^{1/2} \leq H_n^{(2)} \leq \left(H_n^{(3)} \right)^{1/2}$ by Minkowski and Cauchy-Schwarz inequalities

• If flagging “unsafe” regions as “safe” is bad $\rightsquigarrow H_n^{(4)} = E\left(\mu(\Gamma \setminus \hat{\Gamma}_n) \right)$ (Azzimonti et al. 2018)
4 Convergence results

• V. & Bect 2011 prove the consistency of the EI algorithm using two properties:

1. \(\liminf_{n \to \infty} \sup_X G_n = 0 \)

2. \(\inf H_n > 0 \implies \liminf_{n \to \infty} \sup_X G_n > 0 \)

• Bect et al. 2018 improve the result and show the consistency of several other SUR strategies. In particular, if \(\forall x \in X \)

\[
J_n(x) = E_n(H_{n+1} \mid X_{n+1} = x) \leq H_n
\]

then \(\sup_X G_n \to 0 \) a.s.
Rates?

- Almost unknown!

- For the optimization problem, Bull (2011) constructs an upper-bound of the convergence rate of the expected improvement strategy:

 \[
 \sup_{\|f\|_\mathcal{R} \leq 1} M - M_n = O\left(n^{-\left(\nu^{1/d} \log n\right)^\beta}\right)
 \]

- For the optimization of analytic functions using expected improvement, Yarotsky (2012) prove exponential convergence rates

- Open question: could we recover the optimal convergence rate of approximation for SUR strategies?
• In more details, let \(\xi \sim \text{GP}(0, k) \) and assume there exists \(\Phi : \mathbb{R}^d \rightarrow \mathbb{R} \) with Fourier transform \(\tilde{\Phi} \) satisfying

\[
c_1(1 + \|u\|^2_2)^{-\nu - d/2} \leq \tilde{\Phi}(u) \leq c_2(1 + \|u\|^2_2)^{-\nu - d/2}, \quad u \in \mathbb{R}^d,
\]

such that \(k(x, y) = \Phi(x - y) \) (\(\nu > 0, \, 0 < c_1 < c_2 \))

• Then, Ritter (2010) shows that \(e_n = \sup_X \sigma_n(x) \geq C n^{-2\nu/d} \)

• Moreover, V. & Bect (2011) show that the classical sequential non-adaptive strategy

\[
X_{n+1} = \arg \max_X \sigma_n(x)
\]

achieves \(\sup_X \sigma_n(x) = O(n^{2\nu/d}) \)
5 Concluding remarks

Computational cost

• SUR sampling criteria mostly often based on the computation of many posterior distributions \(\rightsquigarrow \) non negligible computational additional cost

• Alleviate computational costs:

 – Bettinger et al. 2009 \(\rightsquigarrow \) Tsallis entropy to maximize response diversity
 – Chevalier et al. 2014, Stroh et al. 2017 \(\rightsquigarrow \) fast formulaes for uncertainty reduction about excursion sets
 – Hernandez-Lobato et al. 2014 \(\rightsquigarrow \) predictive entropy search for optimization
 – Couckuyt et al. 2014, Hupkens et al. 2015, Zhao et al. 2019: fast computation of the EHVI
– Labopin-Richard & Picheny, 2017 ↔ quantile estimation

– …

– Batch evaluations: Ginsbourger et al. 2010, Chevalier et al. 2014, Dutrieux et al. 2015…

About priors

- Non stationary models?

 – Gaussian trees (Gramacy 2007)
 – Warped GP (Snelson et al 2004)…
 – Deep GP (Snoek et al. 2015, Hebbal et al. 2019…)
Fully Bayesian vs empirical Bayes vs alternatives

⇒ use a prior

\[
\xi : \begin{cases}
\xi \mid \beta_1, \ldots, \beta_q, \theta \sim \text{GP} \left(\sum_{i=1}^{q} \beta_i p_i, k_\theta \right), \\
\beta_1, \ldots, \beta_q \sim \text{N}(0, \infty), \\
\theta \sim \pi_0,
\end{cases}
\]

or estimate the prior from data inside a family of prior processes \(\{\xi_\theta; \theta \in \Theta\}\) of the type

\[
\xi_\theta : \begin{cases}
\xi_\theta \mid \beta_1, \ldots, \beta_q \sim \text{GP} \left(\sum_{i=1}^{q} \beta_i p_i, k_\theta \right), \\
\beta_1, \ldots, \beta_q \sim \text{N}(0, \infty)
\end{cases}
\]
Possible shortcoming of the empirical Bayes approach (Benassi et al. 2011)

Branin function (three local maxima)

Average error (200 optim.) with random init. designs
(a) $n_0 = 4$

(b) $n_0 = 20$

Errors on each optimization run
(EGO in blue, FB-EI in red)
• Conclusion:
 – use a plugin method with a sufficiently large initial design
 – or a fully Bayesian approach
 – or maybe “modify” the kriging variance (Harville & Jeske, 1992, Abt 1999, Zimmerman 2006, Muller et al. 2010, Pronzato & Muller 2012…)

Future work?

• Research on SUR-like methods is under active development in the DACE/UQ community and also in machine learning
• Development of uncertainty measures for specific tasks (robust optimization, multi-fidelity…)
• Development of “good” models
• Better understanding of the properties of SUR strategies
Brief overview on

Stepwise Uncertainty Reduction for computer experiments

Emmanuel Vazquez
March 19, 2010