Leveraging CAVs to Reduce Transportation System Energy/Fuel Consumption

Hesham A. Rakha, Ph.D., P.Eng.
Director, Center for Sustainable Mobility

Samuel Reynolds Pritchard Professor of Engineering,
Charles E. Via, Jr. Dept. of Civil & Environmental Engineering

Courtesy Professor, Bradley Dept. of Electrical and Computer Engineering
Proposed Eco-CAC System

Upper Level Strategic Controller
- Real-time Data Fusion
 - Strategic Speed Controller
 - Eco-router

Lower Level Controller
- Local Controller (Interrupted Flow): Eco-CACC-I
 - 1. SPaT Data
 - 2. MAP Data
 - 3. Topographical Data
 - Vehicle Dynamics Optimization
- Local Controller (Uninterrupted Flow): Eco-CACC-U
 - 1. User Input
 - 2. Topographical Data
 - Vehicle Dynamics Optimization
ENERGY/FUEL CONSUMPTION MODELING

VT-CPFM

• Virginia Tech Comprehensive Power-based Fuel consumption Model (VT-CPFM)

 \[F(t) = \begin{cases}
 \alpha_0 + \alpha_1 P(t) + \alpha_2 P(t)^2 & \forall P(t) > 0 \\
 \alpha_0 & \forall P(t) \leq 0
 \end{cases} \]

 – Has the ability to produce a control system that does not result in bang-bang control and
 – Is easily calibrated using publicly available data without the need to gather detailed engine and fuel consumption data.
 – Estimates CO$_2$ emissions ($R^2=95\%$)

Where:
\(\alpha_0, \alpha_1, \alpha_2 \) are model constants that require calibration,
\(P(t) \) is the instantaneous total power in kilowatts (kW) at instant \(t \), and
\(w(t) \) is the engine speed at instant \(t \).
VT-CPEM

- Virginia Tech Comprehensive Power-based electric Energy consumption Model (VT-CPEM)
 - Energy consumption:

 \[P(t) = \left(\frac{R(t)+(1+\lambda)ma(t)}{3600\eta_d} \right) \nu(t) \]

 - Energy regeneration:

 \[\eta_{rb}(t) = \begin{cases}
 \left[e^{\frac{a}{|a(t)|}} \right]^{-1} & \forall a(t) < 0 \\
 0 & \forall a(t) \geq 0
 \end{cases} \]

 \[P_{re}(t) = P_{neg} \times \eta_{rb}(t) \]

Eco-routing

• Problem: Traditional energy calculation from mesoscopic modeling use single variable: average speed
Proposed CAV Eco-routing Algorithm

- Developed a vehicle-agnostic approach to collect transient vehicle data in real-time
 - Entire vehicle trajectory captured using 8 link-specific variables
- Data are sent to the cloud to be fused with existing data and then sent back to CAVs
 - Vehicle-specific link cost computed using the combination of vehicle parameters and the 8 link-specific variables
- Algorithm was implemented in INTEGRATION to generate
 - A dynamic stochastic incremental multi-class user-equilibrium traffic assignment
 - Minimum paths computed using the Dijkstra algorithm

Proposed CAV Eco-routing Algorithm

<table>
<thead>
<tr>
<th></th>
<th>ICEV (ORNL)</th>
<th>BEV (Nissan Leaf)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eco Routing</td>
<td>Eco Routing</td>
</tr>
<tr>
<td></td>
<td>0%</td>
<td>50%</td>
</tr>
<tr>
<td>Cleveland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy(kw)/Fuel(l)</td>
<td>0.57</td>
<td>0.56</td>
</tr>
<tr>
<td>Energy/Fuel saving</td>
<td>1.9%</td>
<td>4.8%</td>
</tr>
<tr>
<td>Travel time (s)</td>
<td>315</td>
<td>323</td>
</tr>
<tr>
<td>Delay (s)</td>
<td>76.2</td>
<td>81.5</td>
</tr>
<tr>
<td>Columbus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy(kw)/Fuel(l)</td>
<td>0.67</td>
<td>0.65</td>
</tr>
<tr>
<td>Energy/Fuel saving</td>
<td>2.27%</td>
<td>5.01%</td>
</tr>
<tr>
<td>Travel time (s)</td>
<td>314</td>
<td>323</td>
</tr>
<tr>
<td>Delay (s)</td>
<td>65.1</td>
<td>71.2</td>
</tr>
</tbody>
</table>
Dynamic Eco-routing Considering Communication System
Dynamic Eco-routing Considering Communication System

- Tested the model on downtown LA (demand of 530K vehicle trips)
 - The results show that in both the ideal and realistic communication cases, FB-ECO operates efficiently at technology market penetration rates between 20% and 30%
 - The VANET communication network performance (packet drop and delay) can have significant effects on the dynamic eco-routing system performance, especially in highly congested networks
 - At LMPs of 75% and higher delays were considerable resulting in network gridlock
STRATEGIC SPEED CONTROLLER

SPD-HARM Algorithm

- Developed a bang-bang feedback controller
 - Proactively regulate the flow of traffic approaching a freeway bottleneck
Algorithm Development, Modeling, Field Implementation and Testing

- Developed SPD-HARM algorithm
- I-66 test bed proof of concept and field testing
 - Supported Leidos and FHWA run three vehicles across all three lanes of I-66
- Conducted simulation testing considering different levels of market penetration
Study Conclusions

• The SH algorithm increases the discharge rate of the bottleneck.
 – Increases by up to 2% with reductions in vehicular delay by approximately 20%;
• The algorithm reduces vehicle emissions and fuel consumption levels.
 – At MPR=100%, CO₂ and fuel consumption can be reduced by approximately 3.5%;
• When CAV MPR is very low, benefits of the SH algorithm cannot be observed, as non-CAV vehicles do not follow the control algorithm;
 – An MPR=10% is sufficient for the SH algorithm to work successfully.
• For the study section, a CAV flow of 400 veh/h (167 veh/h/lane) is sufficient to obtain significant savings in trip delays, emissions and fuel consumption levels.
Strategic Speed Controller

- Developed a variable structure feedback controller
 - CAV-based algorithm regulates the flow of traffic approaching congested regions within a transportation system
Strategic Speed Controller

• Challenge:
 – In real networks we find it difficult to identify homogenous congested signalized regions

• Modified approach:
 – Use strategic speed controller on freeways to regulate the flow of traffic approaching congested regions
 • Dynamic CAV SPD-HARM algorithm
 – Bottlenecks and control links together with control strategy computed in real-time
 – Use data gathered by CAVs to operate a DNB traffic signal controller

Proposed System Overview

• We developed an Eco-CACC system to compute the optimum vehicle trajectory
 – Using I2V and V2V communication
 – Explicitly optimizing vehicle fuel consumption
Queue Prediction

• The model predicts the time at which the queue will be dissipated using kinematic wave theory.
Modeling Results

- Benefits increase with increased market penetration
- Multi-lane approaches more challenging to deal with
Field Implementation and Testing

- The system was implemented in an ACC-equipped vehicle and tested on the VDOT Smart Road
 - A total of 32 subjects were recruited
 - Equal male and female participants
 - Four scenarios:
 - S1: Uninformed driver
 - S2: In-vehicle indication count-down display
 - S3: In-vehicle audio speed recommendation every 2 seconds
 - S4: L2 automation from 250m upstream of the intersection to 180m downstream
Field Results

- The automated Eco-CACC system reduced fuel consumption levels and travel time by up to 39 and 9 percent, respectively.
- The manual Eco-CACC system reduced fuel consumption levels and travel time by nearly 13 and 9 percent, respectively.
Results for EVs

<table>
<thead>
<tr>
<th>OD Demand</th>
<th>Test Scenario</th>
<th>Average Energy Consumption (KW)</th>
<th>Average Total Delay (sec)</th>
<th>Average Vehicle Stops</th>
</tr>
</thead>
<tbody>
<tr>
<td>25% Demand</td>
<td>Without Eco-CACC-I</td>
<td>942.63</td>
<td>31.65</td>
<td>1.87</td>
</tr>
<tr>
<td></td>
<td>With Eco-CACC-I</td>
<td>854.93</td>
<td>30.41</td>
<td>1.44</td>
</tr>
<tr>
<td></td>
<td>Reduction</td>
<td>9.3%</td>
<td>3.9%</td>
<td>23.0%</td>
</tr>
<tr>
<td>50% Demand</td>
<td>Without Eco-CACC-I</td>
<td>880.92</td>
<td>38.41</td>
<td>1.92</td>
</tr>
<tr>
<td></td>
<td>With Eco-CACC-I</td>
<td>815.6</td>
<td>36.98</td>
<td>1.53</td>
</tr>
<tr>
<td></td>
<td>Reduction</td>
<td>7.4%</td>
<td>3.7%</td>
<td>20.3%</td>
</tr>
<tr>
<td>75% Demand</td>
<td>Without Eco-CACC-I</td>
<td>851.13</td>
<td>55.67</td>
<td>2.12</td>
</tr>
<tr>
<td></td>
<td>With Eco-CACC-I</td>
<td>810.97</td>
<td>50.42</td>
<td>1.69</td>
</tr>
<tr>
<td></td>
<td>Reduction</td>
<td>4.7%</td>
<td>9.4%</td>
<td>20.3%</td>
</tr>
<tr>
<td>100% Demand</td>
<td>Without Eco-CACC-I</td>
<td>850.84</td>
<td>118.45</td>
<td>2.74</td>
</tr>
<tr>
<td></td>
<td>With Eco-CACC-I</td>
<td>832.95</td>
<td>112.43</td>
<td>1.98</td>
</tr>
<tr>
<td></td>
<td>Reduction</td>
<td>2.1%</td>
<td>5.1%</td>
<td>27.7%</td>
</tr>
</tbody>
</table>

Comparison
- **EV**: Max. decel, Mid-range decel
- **ICEV**: Min. decel, Max. decel
Extension to Multiple Intersections

Control Region
ECO-CACC-U CONTROLLER

Eco-CACC-U Controller
Potential Benefits

<table>
<thead>
<tr>
<th></th>
<th>HC</th>
<th>CO</th>
<th>NO\textsubscript{x}</th>
<th>CO\textsubscript{2}</th>
<th>Fuel</th>
</tr>
</thead>
<tbody>
<tr>
<td>VT-Micro Hwy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top 1 %</td>
<td>16 %</td>
<td>19 %</td>
<td>4 %</td>
<td>3 %</td>
<td>4 %</td>
</tr>
<tr>
<td>Top 2 %</td>
<td>24 %</td>
<td>30 %</td>
<td>7 %</td>
<td>6 %</td>
<td>7 %</td>
</tr>
<tr>
<td>Top 5 %</td>
<td>39 %</td>
<td>47 %</td>
<td>17 %</td>
<td>13 %</td>
<td>14 %</td>
</tr>
<tr>
<td>Top 10 %</td>
<td>54 %</td>
<td>64 %</td>
<td>32 %</td>
<td>23 %</td>
<td>25 %</td>
</tr>
<tr>
<td>CMEM24 Hwy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top 1 %</td>
<td>20 %</td>
<td>38 %</td>
<td>30 %</td>
<td>3 %</td>
<td>5 %</td>
</tr>
<tr>
<td>Top 2 %</td>
<td>32 %</td>
<td>63 %</td>
<td>50 %</td>
<td>6 %</td>
<td>9 %</td>
</tr>
<tr>
<td>Top 5 %</td>
<td>52 %</td>
<td>80 %</td>
<td>73 %</td>
<td>14 %</td>
<td>17 %</td>
</tr>
<tr>
<td>Top 10 %</td>
<td>81 %</td>
<td>84 %</td>
<td>90 %</td>
<td>25 %</td>
<td>28 %</td>
</tr>
</tbody>
</table>
Eco-CACC-U Controller
Lead Vehicle Control

• The proposed predictive eco-cruise control system
 – Generates optimal vehicle controls using topographic data.
 – Optimizes the vehicle controls in advance using a dynamic programming (DP) implementation of Dijkstra’s shortest path algorithm.
 – Requires three system parameters:
 • Discretization distance (stage length), look-ahead distance, and optimization frequency.

• Three step optimization:
 – Discretize continuous search space
 • Use speed and gear levels to construct a graph
 – Prune search space using powertrain model
 • Speed and gear space within vehicle physical abilities for given topography
 – Compute optimum control (minimum path)
 • The vehicle speed and gear changes over each stage considering a penalty at transitions
Eco-CACC-U Controller
Lead Vehicle Control

- 2790 miles with mostly highway sections
 - Use I-80, I-76, I-70, I-15, and I-10 route
- Assumed no interaction with other vehicles
Eco-CACC-U Controller
Lead Vehicle Control

<table>
<thead>
<tr>
<th>Toyota Camry</th>
<th>Fuel (L)</th>
<th>MPG</th>
<th>Fuel Saving</th>
<th>TT (h)</th>
<th>Avg. Spd (mph)</th>
<th>σᵥ (mph)</th>
<th>ΔTT (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional</td>
<td>252.8</td>
<td>41.9</td>
<td></td>
<td>43.0</td>
<td>64.9</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>Predictive (+5 &-1 mph)</td>
<td>239.6</td>
<td>44.3</td>
<td>5.2%</td>
<td>43.3</td>
<td>64.4</td>
<td>1.2</td>
<td>0.8%</td>
</tr>
<tr>
<td>Conventional (Spd: 60.7mph)</td>
<td>239.2</td>
<td>44.3</td>
<td>5.4%</td>
<td>45.1</td>
<td>60.6</td>
<td>0.6</td>
<td>4.8%</td>
</tr>
<tr>
<td>Predictive (± 5 mph)</td>
<td>227.2</td>
<td>46.7</td>
<td>10.1%</td>
<td>46.0</td>
<td>60.7</td>
<td>2.0</td>
<td>7.0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chevy Tahoe</th>
<th>Fuel (L)</th>
<th>MPG</th>
<th>Fuel Saving</th>
<th>TT (h)</th>
<th>Avg. Spd (mph)</th>
<th>σᵥ (mph)</th>
<th>ΔTT (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional</td>
<td>469.3</td>
<td>22.6</td>
<td></td>
<td>42.9</td>
<td>65.0</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Predictive (+5 &-1 mph)</td>
<td>423.7</td>
<td>25.0</td>
<td>9.7%</td>
<td>43.5</td>
<td>64.1</td>
<td>0.7</td>
<td>1.4%</td>
</tr>
<tr>
<td>Conventional (Spd: 60.3mph)</td>
<td>431.4</td>
<td>24.6</td>
<td>8.1%</td>
<td>45.9</td>
<td>60.8</td>
<td>1.0</td>
<td>6.9%</td>
</tr>
<tr>
<td>Predictive (± 5 mph)</td>
<td>387.1</td>
<td>27.4</td>
<td>17.5%</td>
<td>46.3</td>
<td>60.3</td>
<td>1.2</td>
<td>7.9%</td>
</tr>
</tbody>
</table>
Eco-CACC-U Controller
Human Control

The vehicle dynamics model:

\[a_n = f_a a_{\text{max}} \]

Throttle input function:

\[f_a = e^{-g_1 X_n (1 - X_n^{g_2} e^{g_2 (1 - X_n)})^{g_3}} \]

Requires the calibration of 3 parameters \(g_1, g_2 \) and \(g_3 \)

Non-steady state Collision Avoidance:

\[X_n = \frac{s_n}{\bar{s}_n} \cdot \frac{v_n}{\bar{v}_n} \]

Function of the actual and desired speed and distance gap.
Eco-CACC-U Controller
Human Control

- Noise signals:

\[
\begin{align*}
\overline{u_n}(t) &= u_n(t - \Delta t) - 0.01(s_{n+1} - s_j) \left(e^{-0.01} \cdot W_l(t - \Delta t) + \sqrt{0.02} \cdot N(0, 1) \right) \\
W_l(1) &= N(0, 1) \\
\overline{s_{n+1}}(t) &= s_{n+1}(t - \Delta t) \times e^{0.1 \left(e^{-0.01} \cdot W_s(t - \Delta t) + \sqrt{0.02} \cdot N(0, 1) \right)} \\
W_s(1) &= N(0, 1) \\
\ddot{a}_n(t) &= a_n(t) + N(0, 0.25)
\end{align*}
\]
Eco-CACC-U Controller
Automated Control

Accelerating

\[
d_{\text{max}}(t) = \frac{F(t) - R(t)}{m}
\]

\[
F = \min \left(\frac{3600 \eta_d P}{v}, m_{ta} g \mu \right)
\]

\[
R = \frac{\rho}{25.92} C_d C_h A_f v^2 + m g \frac{c_r^0}{1000} (c_r v + c_r^2) + mg G
\]

\[
m v = u [F - (R_a + R_r + R_g)]
\]

First order non-linear dynamical system in which the input is the signal \(u \) and the output is the car speed \(v \)

Decelerating

\[
d_{\text{max}}(t) = - \frac{F_{b, \text{max}}(t) + R(t)}{m}
\]

\[
F_{b, \text{max}} = mn_b g
\]

\[
R = \frac{\rho}{25.92} C_d C_h A_f v^2 + m g \frac{c_r^0}{1000} (c_r v + c_r^2) + mg G
\]

\[
m \frac{dv}{dt} = -u [F_{b, \text{max}} + R]
\]

Output signal \(u \) is capped at 1.0
Eco-CACC-U Controller
Automated Control

Immediate Leader

\[e_{n1}(t) = (x_{n-1}(t) - x_n(t) - s_j) - h_{\text{desired}} \cdot v_n(t) \]

\[v_n(t) = v_{i-1}(t) \]

\[e_{n2}(t) = (x_1(t) - x_n(t) - s_j) - [(n - 1) \cdot h_{\text{desired}} \cdot v_n(t) + (n - 2) s_j] \]

Platoon Leader

Two PD controllers

\[u_n(t) = u_{1n}(t) + u_{2n}(t) \]

\[u_{1n}(t) = K_p e_{n1}(t) + K_d (v_{n-1} - v_n) \]

\[u_{2n}(t) = \frac{K_p}{n} e_{n2}(t) + \frac{K_d}{n} (v_1 - v_n) \]
Eco-CACC-U Controller
Impact of Platooning on Drag Coefficient

![Graph of drag coefficient vs spacing and gap](image)

![Graph of percentage change in drag coefficient vs spacing and gap](image)
Questions?

Hesham A. Rakha
hrakha@vtti.vt.edu
540-231-1505